Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 060201    DOI: 10.1088/0256-307X/37/6/060201
GENERAL |
Solution to the Fokker–Planck Equation with Piecewise-Constant Drift
Bin Cheng1, Ya-Ming Chen2**, Xiao-Gang Deng2,3
1College of Computer, National University of Defense Technology, Changsha 410073, China
2College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
3Chinese Academy of Military Science, Beijing 100071, China
Cite this article:   
Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng 2020 Chin. Phys. Lett. 37 060201
Download: PDF(494KB)   PDF(mobile)(485KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the solution to the Fokker–Planck equation with piecewise-constant drift, taking the case with two jumps in the drift as an example. The solution in Laplace space can be expressed in closed analytic form, and its inverse can be obtained conveniently using some numerical inversion methods. The results obtained by numerical inversion can be regarded as exact solutions, enabling us to demonstrate the validity of some numerical methods for solving the Fokker–Planck equation. In particular, we use the solved problem as a benchmark example for demonstrating the fifth-order convergence rate of the finite difference scheme proposed previously [Chen Y and Deng X Phys. Rev. E 100 (2019) 053303].
Received: 04 February 2020      Published: 26 May 2020
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  52.65.Ff (Fokker-Planck and Vlasov equation)  
  02.30.Uu (Integral transforms)  
Fund: *Supported by the National Natural Science Foundation of China (Grant Nos. 11972370 and 61772542).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/060201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/060201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bin Cheng
Ya-Ming Chen
Xiao-Gang Deng
[1] Crandall S H, Lee S S and Williams Jr J H 1974 J. Appl. Mech. 41 1094
[2] Crandall S H and Lee S S 1976 Ingenieur-Arch. 45 361
[3] Reimann P 2002 Phys. Rep. 361 57
[4] De Gennes P G 2005 J. Stat. Phys. 119 953
[5] Gnoli A, Puglisi A and Touchette H 2013 Europhys. Lett. 102 14002
[6] Baule A, Touchette H and Cohen E G D 2011 Nonlinearity 24 351
[7] Menzel A M and Goldenfeld N 2011 Phys. Rev. E 84 011122
[8] Baule A and Sollich P 2012 Europhys. Lett. 97 20001
[9] Baule A and Sollich P 2013 Phys. Rev. E 87 032112
[10] Chen Y and Just W 2014 Phys. Rev. E 89 022103
[11] Chen Y and Just W 2014 Phys. Rev. E 90 042102
[12] Geffert P M and Just W 2017 Phys. Rev. E 95 062111
[13] Xu W, Wang L, Feng J, Qiao Y and Han P 2018 Chin. Phys. B 27 110503
[14] Hayakawa H 2005 Physica D 205 48
[15]Risken H 1989 The Fokker–Planck Equation: Methods of Solution and Applications (Berlin: Springer)
[16] Touchette H, Der Straeten E V and Just W 2010 J. Phys. A 43 445002
[17] Caughey T K and Dienes J K 1961 J. Appl. Phys. 32 2476
[18] Touchette H, Prellberg T and Just W 2012 J. Phys. A 45 395002
[19] Karatzas I and Shreve S E 1984 Ann. Probab. 12 819
[20]Simpson D J W and Kuske R 2014 Disc. Contin. Dyn. Syst. B 19 2889
[21] Baule A, Cohen E G D and Touchette H 2010 J. Phys. A 43 025003
[22] Chen Y, Baule A, Touchette H and Just W 2013 Phys. Rev. E 88 052103
[23] Leobacher G and Szölgyenyi M 2016 BIT Numer. Math. 56 151
[24] Ngo H L and Taguchi D 2017 Stat. Probab. Lett. 125 55
[25] Papaspiliopoulos O, Roberts G O and Taylor K B 2016 Adv. Appl. Probab. 48 249
[26] Dereudre D, Mazzonetto S and Roelly S 2017 SIAM J. Sci. Comput. 39 A711
[27] Chen Y and Deng X 2018 Phys. Rev. E 98 033302
[28] Chen Y and Deng X 2019 Phys. Rev. E 100 053303
[29] Atkinson J D and Caughey T K 1968 Int. J. Non-Linear Mech. 3 137
[30] Atkinson J D and Caughey T K 1968 Int. J. Non-Linear Mech. 3 399
[31] Talbot A 1979 IMA J. Appl. Math. 23 97
[32] Abate J and Valkó P P 2004 Int. J. Numer. Methods Eng. 60 979
[33] Abate J and Whitt W 2006 INFORMS J. Comput. 18 408
[34] Zhang M and Shu C W 2003 Math. Mod. Meth. Appl. Sci. 13 395
[35] Tian X and Du Q 2013 SIAM J. Numer. Anal. 51 3458
Related articles from Frontiers Journals
[1] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift *[J]. Chin. Phys. Lett., 0, (): 060201
[2] Chuan-Jie Hu, Ya-Li Zeng, Yi-Neng Liu, Huan-Yang Chen. Three-Dimensional Broadband Acoustic Waveguide Cloak[J]. Chin. Phys. Lett., 2020, 37(5): 060201
[3] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 060201
[4] Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu. Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling[J]. Chin. Phys. Lett., 2018, 35(6): 060201
[5] Xiang Li, Xu Qian, Bo-Ya Zhang, Song-He Song. A Multi-Symplectic Compact Method for the Two-Component Camassa–Holm Equation with Singular Solutions[J]. Chin. Phys. Lett., 2017, 34(9): 060201
[6] Xiang Li, Xu Qian, Ling-Yan Tang, Song-He Song. A High-Order Conservative Numerical Method for Gross–Pitaevskii Equation with Time-Varying Coefficients in Modeling BEC[J]. Chin. Phys. Lett., 2017, 34(6): 060201
[7] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 060201
[8] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 060201
[9] Ling-Yan Lin, Yu Qiu, Yu Zhang, Hao Zhang. Analysis of Effect of Zn(O,S) Buffer Layer Properties on CZTS Solar Cell Performance Using AMPS[J]. Chin. Phys. Lett., 2016, 33(10): 060201
[10] Mahdi Ezheiyan, Hossein Sadeghi, Mohammad-Hossein Tavakoli. Thermal Analysis Simulation of Germanium Zone Refining Process Assuming a Constant Radio-Frequency Heating Source[J]. Chin. Phys. Lett., 2016, 33(05): 060201
[11] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 060201
[12] JI Ying, WANG Ya-Wei. Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2015, 32(4): 060201
[13] TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong, YANG Jun-Zhong. Collective Dynamics for Network-Organized Identical Excitable Nodes[J]. Chin. Phys. Lett., 2015, 32(02): 060201
[14] M. N. Stankov, M. D. Petković, V. Lj. Marković, S. N. Stamenković, A. P. Jovanović. The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon[J]. Chin. Phys. Lett., 2015, 32(02): 060201
[15] CAI Wen-Jun, WANG Yu-Shun, SONG Yong-Zhong. Numerical Simulation of Rogue Waves by the Local Discontinuous Galerkin Method[J]. Chin. Phys. Lett., 2014, 31(04): 060201
Viewed
Full text


Abstract