CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electrically Tunable Wafer-Sized Three-Dimensional Topological Insulator Thin Films Grown by Magnetron Sputtering |
Qixun Guo1, Yu Wu1, Longxiang Xu1, Yan Gong2, Yunbo Ou2, Yang Liu1, Leilei Li1, Yu Yan3**, Gang Han4, Dongwei Wang5, Lihua Wang6, Shibing Long7, Bowei Zhang8, Xun Cao8, Shanwu Yang4, Xuemin Wang4, Yizhong Huang8, Tao Liu9, Guanghua Yu1, Ke He2**, Jiao Teng1** |
1Department of Material Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 2State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 3Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 4Collaborative Innovation Center of Advanced Steel Technology, University of Science and Technology Beijing, Beijing 100083 5CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190 6Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 7School of Microelectronics, University of Science and Technology of China, Hefei 230026 8School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore 9Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
|
|
Cite this article: |
Qixun Guo, Yu Wu, Longxiang Xu et al 2020 Chin. Phys. Lett. 37 057301 |
|
|
Abstract Three-dimensional (3D) topological insulators (TIs) are candidate materials for various electronic and spintronic devices due to their strong spin-orbit coupling and unique surface electronic structure. Rapid, low-cost preparation of large-area TI thin films compatible with conventional semiconductor technology is the key to the practical applications of TIs. Here we show that wafer-sized Bi$_{2}$Te$_{3}$ family TI and magnetic TI films with decent quality and well-controlled composition and properties can be prepared on amorphous SiO$_{2}$/Si substrates by magnetron cosputtering. The SiO$_{2}$/Si substrates enable us to electrically tune (Bi$_{1-x}$Sb$_{x})_{2}$Te$_{3}$ and Cr-doped (Bi$_{1-x}$Sb$_{x})_{2}$Te$_{3}$ TI films between p-type and n-type behavior and thus study the phenomena associated with topological surface states, such as the quantum anomalous Hall effect (QAHE). This work significantly facilitates the fabrication of TI-based devices for electronic and spintronic applications.
|
|
Received: 02 March 2020
Published: 25 April 2020
|
|
PACS: |
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
|
Fund: Supported by the National Key R&D Plan Program of China (Grant No. 2017YFF0206104), the National Key Scientific Research Projects of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 61574169 and 51871018), Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing Natural Science Foundation (Grant No. Z180014), and Beijing Outstanding Young Scientists Projects (Grant No. BJJWZYJH01201910005018). |
|
|
[1] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 | [2] | Qi X L and Zhang S C 2010 Phys. Today 63 33 | [3] | Fan Y B et al 2014 Nat. Mater. 13 699 | [4] | Fan Y B et al 2016 Nat. Nanotechnol. 11 352 | [5] | Yasuda K et al 2017 Phys. Rev. Lett. 119 137204 | [6] | Han J H et al 2017 Phys. Rev. Lett. 119 077702 | [7] | Dc M et al 2018 Nat. Mater. 17 800 | [8] | He Q L et al 2018 Phys. Rev. Lett. 121 096802 | [9] | Wang Y et al 2017 Nat. Commun. 8 1364 | [10] | He Q L et al 2017 Nat. Mater. 16 94 | [11] | Mogi M et al 2017 Nat. Mater. 16 516 | [12] | Šmejkal L et al 2018 Nat. Phys. 14 242 | [13] | Chen Y L et al 2009 Science 325 178 | [14] | Xia Y et al 2009 Nat. Phys. 5 398 | [15] | Checkelsky J G et al 2011 Phys. Rev. Lett. 106 196801 | [16] | Peng H et al 2010 Nat. Mater. 9 225 | [17] | Wang Z H, Yang L, Li X J, Zhao X T, Wang H L, Zhang Z D and Gao X P 2014 Nano Lett. 14 6510 | [18] | Chen X, Ma X C, He K, Jia J F and Xue Q K 2011 Adv. Mater. 23 1162 | [19] | Taskin A A, Sasaki S, Segawa K and Ando Y 2012 Adv. Mater. 24 5581 | [20] | Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167 | [21] | Wang W J, Gao K H and Li Z Q 2016 Sci. Rep. 6 25291 | [22] | Sapkota Y R and Mazumdar D 2018 J. Appl. Phys. 124 105306 | [23] | Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K and Chan M H W 2011 Phys. Rev. B 83 245438 | [24] | He X Y, Guan T, Wang X X, Feng B J, Cheng P, Chen L, Li Y Q and Wu K H 2012 Appl. Phys. Lett. 101 123111 | [25] | Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S and Tokura Y 2014 Nat. Phys. 10 731 | [26] | Kong D S, Chen Y L, Cha J J, Zhang Q F, Analytis J G, Lai K J, Liu Z K, Hong S S, Koski K J and Mo S K 2011 Nat. Nanotechnol. 6 705 | [27] | Shimizu S, Yoshimi R, Hatano T, Takahashi K S, Tsukazaki A, Kawasaki M, Iwasa Y and Tokura Y 2012 Phys. Rev. B 86 045319 | [28] | Yoshimi R, Tsukazaki A, Kozuka Y, Falson J, Takahashi K S, Checkelsky J G, Nagaosa N, Kawasaki M and Tokura Y 2015 Nat. Commun. 6 6627 | [29] | Lee J S, Richardella A, Hickey D R, Mkhoyan K A and Samarth N 2015 Phys. Rev. B 92 155312 | [30] | Tian J F, Chang C Z, Cao H L, He K, Ma X C, Xue Q K and Chen Y P 2015 Sci. Rep. 4 4859 | [31] | Islam S, Bhattacharyya S, Kandala A, Richardella A, Samarth N and Ghosh A 2017 Appl. Phys. Lett. 111 062107 | [32] | Cha J J, Williams J R, Kong D, Meister S, Peng H, Bestwick A J, Gallagher P, Goldhaber G D and Cui Y 2010 Nano Lett. 10 1076 | [33] | Hor Y S, Roushan P, Beidenkopf H, Seo J, Qu D, Checkelsky J G, Wray L A, Hsieh D, Xia Y, Xu S Y, Qian D, Hasan M Z, Ong N P, Yazdani A and Cava R J 2010 Phys. Rev. B 81 195203 | [34] | Checkelsky J G, Ye J T, Onose Y, Iwasa Y and Tokura Y 2012 Nat. Phys. 8 729 | [35] | Li H, Song Y R, Yao M Y, Yang F, Miao L, Zhu F F, Liu C H, Gao C L, Qian D, Yao X, Jia J F, Shi Y J and Wu D 2012 Appl. Phys. Lett. 101 072406 | [36] | Li B, Fan Q Y, Ji F H, Liu Z, Pan H and Qiao S 2013 Phys. Lett. A 377 1925 | [37] | Chang C Z, Zhang J S, Liu M H, Zhang Z C, Feng X, Li K, Wang L L, Chen X, Dai X and Fang Z 2013 Adv. Mater. 25 1065 | [38] | Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 | [39] | Kou X F, Lang M R, Fan Y B, Jiang Y, Nie T X, Zhang J M, Jiang W J, Wang Y, Yao Y G, He L and Wang K L 2013 ACS Nano 7 9205 | [40] | Chang C Z, Zhao W, Kim D Y, Zhang H J, Assaf B A, Heiman D, Zhang S C, Liu C X, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473 | [41] | Kandala A, Richardella A, Kempinger S, Liu C X and Samarth N 2015 Nat. Commun. 6 7434 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|