Chin. Phys. Lett.  2020, Vol. 37 Issue (5): 054301    DOI: 10.1088/0256-307X/37/5/054301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks
Shu-Huan Xie1†, Xinsheng Fang2†, Peng-Qi Li1, Sibo Huang2, Yu-Gui Peng1, Ya-Xi Shen1, Yong Li2**, Xue-Feng Zhu1**
1School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074
2Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092
Cite this article:   
Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li et al  2020 Chin. Phys. Lett. 37 054301
Download: PDF(2960KB)   PDF(mobile)(2956KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a design of tunable double-band perfect absorbers based on the resonance absorption in acoustic metasurfaces with nesting helical tracks and deep-subwavelength thicknesses ($ < \lambda /30$ with $\lambda$ being the operation wavelength). By rotating the cover cap with an open aperture on the nesting helical tracks, we can tailor the effective lengths of resonant tubular cavities in the absorber at will, while the absorption peak frequency is flexibly shifted in spectrum and the acoustic impedance is roughly matched with air. The simulated particle velocity fields at different configurations reveal that sound absorption mainly occurs at the open aperture. Our experiment measurements agree well with the theoretical analysis and simulation, demonstrating the wide-spectrum and tunable absorption performance of the designed flat acoustic device.
Received: 09 February 2020      Published: 25 April 2020
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.20.+g (General linear acoustics)  
  43.40.+s (Structural acoustics and vibration)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11674346, 11704284, 11690030, and 11690032). Xue-Feng Zhu and Shu-Huan Xie were supported by the Bird Nest Plan of HUST.

?Shu-Huan Xie and Xinsheng Fang contributed equally to this work.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/5/054301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I5/054301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shu-Huan Xie
Xinsheng Fang
Peng-Qi Li
Sibo Huang
Yu-Gui Peng
Ya-Xi Shen
Yong Li
Xue-Feng Zhu
[1]Biot M A 1962 J. Acoust. Soc. Am. 34 1254
[2]Mei J, Ma G, Yang M, Yang Z, Wen W and Sheng P 2012 Nat. Commun. 3 756
[3]Lee S H, Park C M, Seo Y M, Wang Z G and Kim C K 2010 Phys. Rev. Lett. 104 054301
[4]Xiao S W, Ma G C, Li Y, Yang Z Y and Sheng P 2015 Appl. Phys. Lett. 106 091904
[5]Ma G C, Yang M, Xiao S, Yang Z and Sheng P 2014 Nat. Mater. 13 873
[6]Jiang X, Li Y and Zhang L K 2017 J. Acoust. Soc. Am. 141 EL363
[7]Zhao H, Wang Y, Yu D, Yang H, Zhong J, Wu F and Wen J 2020 Compos. Struct. 239 111978
[8]Assouar M B, Senesi M, Oudich M, Ruzzene M and Hou Z 2012 Appl. Phys. Lett. 101 173505
[9]Cai X, Guo Q, Hu G and Yang J 2014 Appl. Phys. Lett. 105 121901
[10]Allard J F and Atalla N 2009 Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials (Chichester: Wiley)
[11]Landau L D and Lifshitz E M 1986 Course of Theoretical Physics: Theory of Elasticity 3rd edn (Oxford: Butterworth-Heinemann)
[12]Zhang C and Hu X H 2016 Phys. Rev. Appl. 6 064025
[13]Wang Y, Zhao H, Yang H, Zhong J, Zhao D, Lu Z and Wen J 2018 J. Appl. Phys. 123 185109
[14]Xie Y B, Popa B I, Zigoneanu L and Cummer S A 2013 Phys. Rev. Lett. 110 175501
[15]Liang Z X, Feng T H, Lok S K, Liu F, Ng K B, Chan C H, Wang J J, Han S, Lee S and Li J 2013 Sci. Rep. 3 1614
[16]Li Y, Liang B, Gu Z M, Zou X Y and Cheng J C 2013 Appl. Phys. Lett. 103 053505
[17]Liang Z and Li J 2012 Phys. Rev. Lett. 108 114301
[18]Bongard F, Lissek H and Mosig J R 2010 Phys. Rev. B 82 094306
[19]Li Y and Assouar B M 2016 Appl. Phys. Lett. 108 063502
[20]Huang S B, Fang X S, Wang X, Assouar B M, Cheng Q and Li Y 2018 Appl. Phys. Lett. 113 233501
[21]Li Y, Liang B, Tao Xu, Zhu X F, Zou X Y and Cheng J C 2012 Appl. Phys. Lett. 101 233508
[22]Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C and Liu S 2016 Nat. Commun. 7 11731
[23]Ding Y H, Statharas E C, Yao K and Hong M 2017 Appl. Phys. Lett. 110 241903
[24]Morse P M and Ingard K U 1987 Theoretical Acoustics (Princeton: Princeton University Press)
[25]Stinson M R 1991 J. Acoust. Soc. Am. 89 550
[26]Ward G P, Lovelock R K, Murray A R J, Hibbins A P, Sambles J R and Smith J D 2015 Phys. Rev. Lett. 115 044302
Related articles from Frontiers Journals
[1] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 054301
[2] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 054301
[3] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 054301
[4] Jin-Fu Liang, Yu An, Wei-Zhong Chen. Computational Simulation of Sodium Doublet Line Intensities in Multibubble Sonoluminescence[J]. Chin. Phys. Lett., 2019, 36(10): 054301
[5] Di Wu, De-Yao Yin, Zhi-Yuan Xiao, Qing-Fan Shi. Design of an Acoustic Levitator for Three-Dimensional Manipulation of Numerous Particles[J]. Chin. Phys. Lett., 2019, 36(9): 054301
[6] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 054301
[7] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 054301
[8] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 054301
[9] Ke-xue Sun, Shu-yi Zhang, Kiyotaka Wasa. High Ferroelectricities and High Curie Temperature of BiInO$_{3}$PbTiO$_{3}$ Thin Films Deposited by RF Magnetron Sputtering Method[J]. Chin. Phys. Lett., 2018, 35(12): 054301
[10] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 054301
[11] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 054301
[12] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 054301
[13] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 054301
[14] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 054301
[15] Ming-Liang Li, Ming-Xi Deng, Guang-Jian Gao, Han Chen, Yan-Xun Xiang. Influence of Change in Inner Layer Thickness of Composite Circular Tube on Second-Harmonic Generation by Primary Circumferential Ultrasonic Guided Wave Propagation[J]. Chin. Phys. Lett., 2017, 34(6): 054301
Viewed
Full text


Abstract