Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 048101    DOI: 10.1088/0256-307X/37/4/048101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Chemical Vapor Deposition of Two-Dimensional PbS Nanoplates for Photodetection
Yi-Yi Gu1,2, Yi-Fan Wang1,2, Jing Xia1,2, Xiang-Min Meng1,2**
1Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Yi-Yi Gu, Yi-Fan Wang, Jing Xia et al  2020 Chin. Phys. Lett. 37 048101
Download: PDF(816KB)   PDF(mobile)(807KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Non-layered two-dimensional (2D) lead sulfide (PbS) has attracted growing interest recently due to its direct narrow bandgap (0.4 eV) and broad spectral detection from visible to mid-IR region, which lead to remarkable electronic and optoelectronic properties promising for real applications. We report the chemical vapor deposition growth of highly crystalline 2D PbS crystals on mica substrates. The high quality and uniformity of 2D PbS nanoplates are confirmed by atomic force microscopy, x-ray powder diffraction, transmission electron microscopy and x-ray photoelectron spectroscopy. The morphology and lateral size are controllable by different growth temperatures. Photodetectors made from 2D PbS nanoplates reveal good stability, high photoresponsivity, and fast response time, which indicates their promising applications for ultrathin optoelectronics.
Received: 13 January 2020      Published: 24 March 2020
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  42.79.Pw (Imaging detectors and sensors)  
  61.66.Fn (Inorganic compounds)  
  62.23.Kn (Nanosheets)  
Fund: Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA09040203), and the National Natural Science Foundation of China (Grant No. 11704389).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/048101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/048101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi-Yi Gu
Yi-Fan Wang
Jing Xia
Xiang-Min Meng
[1]Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[2]Li X, Tao L, Chen Z, Fang H, Li X, Wang X, Xu J B and Zhu H 2017 Appl. Phys. Rev. 4 021306
[3]Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X and Zhang G Y 2018 Acta Phys. Sin. 67 128103 (in Chinese)
[4]Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P and Koppens F H L 2019 Nature 573 507
[5]Zhang L, Wang Y, Dong Y, Zhao X, Fu C and He D 2018 Chin. Phys. B 27 018101
[6]Zhang W L 2019 Chin. Phys. Lett. 36 067301
[7]Cai H, Gu Y, Lin Y C, Yu Y, Geohegan D B and Xiao K 2019 Appl. Phys. Rev. 6 041312
[8]Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano 7 2898
[9]Cai Z, Liu B, Zou X and Cheng H M 2018 Chem. Rev. 118 6091
[10]Xu Z, Zhu J, Xu W, Fu D, Hu C and Jiang F 2018 Chin. Phys. B 27 088104
[11]Du Y, Yin Z, Zhu J, Huang X, Wu X J, Zeng Z, Yan Q and Zhang H 2012 Nat. Commun. 3 1177
[12]Schliehe C, Juarez B H, Pelletier M, Jander S, Greshnykh D, Nagel M, Meyer A, Foerster S, Kornowski A, Klinke C and Weller H 2010 Science 329 550
[13]Sun Y, Sun Z, Gao S, Cheng H, Liu Q, Piao J, Yao T, Wu C, Hu S, Wei S and Xie Y 2012 Nat. Commun. 3 1057
[14]Fan Z, Huang X, Han Y, Bosman M, Wang Q, Zhu Y, Liu Q, Li B, Zeng Z, Wu J, Shi W, Li S, Gan C L and Zhang H 2015 Nat. Commun. 6 6571
[15]Sun Y, Liu Q, Gao S, Cheng H, Lei F, Sun Z, Jiang Y, Su H, Wei S and Xie Y 2013 Nat. Commun. 4 2899
[16]Acharya S, Das B, Thupakula U, Ariga K, Sarma D D, Israelachvili J and Golan Y 2013 Nano Lett. 13 409
[17]Cheng H C, Wang G, Li D, He Q, Yin A, Liu Y, Wu H, Ding M, Huang Y and Duan X 2016 Nano Lett. 16 367
[18]Wang Q, Wen Y, He P, Yin L, Wang Z, Wang F, Xu K, Huang Y, Wang F, Jiang C and He J 2016 Adv. Mater. 28 6497
[19]Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z and Zheng N 2011 Nat. Nanotechnol. 6 28
[20]Wang C, Zhou Y, Ge M, Xu X, Zhang Z and Jiang J Z 2010 J. Am. Chem. Soc. 132 46
[21]Wang Q, Wen Y, Cai K, Cheng R, Yin L, Zhang Y, Li J, Wang Z, Wang F, Wang F, Shifa T A, Jiang C, Yang H and He J 2018 Sci. Adv. 4 eaap7916
[22]Wang F, Wang Z, Shifa T A, Wen Y, Wang F, Zhan X, Wang Q, Xu K, Huang Y, Yin L, Jiang C and He J 2017 Adv. Funct. Mater. 27 1603254
[23]Regulacio M D, Ye C, Lim S H, Bosman M, Polavarapu L, Koh W L, Zhang J, Xu Q H and Han M Y 2011 J. Am. Chem. Soc. 133 2052
[24]Cassette E, Mahler B, Guigner J M, Patriarche G, Dubertret B and Pons T 2012 ACS Nano 6 6741
[25]Ha S T, Liu X, Zhang Q, Giovanni D, Sum T C and Xiong Q 2014 Adv. Opt. Mater. 2 838
[26]Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M and Lu G Q 2008 Nature 453 638
[27]Son J S, Wen X D, Joo J, Chae J, Baek S I, Park K, Kim J H, An K, Yu J H, Kwon S G, Choi S H, Wang Z, Kim Y W, Kuk Y, Hoffmann R and Hyeon T 2009 Angew. Chem. Int. Ed. 48 6861
[28]Cheng Y, Wang Y, Bao F and Chen D 2006 J. Phys. Chem. B 110 9448
[29]Nichols P L, Liu Z, Yin L, Turkdogan S, Fan F and Ning C Z 2015 Nano Lett. 15 909
[30]Miller E M, Kroupa D M, Zhang J, Schulz P, Marshall A R, Kahn A, Lany S, Luther J M, Beard M C, Perkins C L and van de Lagemaat J 2016 ACS Nano 10 3302
[31]McDonald S A, Konstantatos G, Zhang S, Cyr P W, Klem E J D, Levina L and Sargent E H 2005 Nat. Mater. 4 138
[32]Li X B, Guo P, Zhang Y N, Peng R F, Zhang H and Liu L M 2015 J. Mater. Chem. C 3 6284
[33]Aerts M, Bielewicz T, Klinke C, Grozema F C, Houtepen A J, Schins J M and Siebbeles L D A 2014 Nat. Commun. 5 3789
[34]Zhao N, Osedach T P, Chang L Y, Geyer S M, Wanger D, Binda M T, Arango A C, Bawendi M G and Bulovic V 2010 ACS Nano 4 3743
[35]Wen Y, Yin L, He P, Wang Z, Zhang X, Wang Q, Shifa T A, Xu K, Wang F, Zhan X, Wang F, Jiang C and He J 2016 Nano Lett. 16 6437
[36]Wen Y, Wang Q, Yin L, Liu Q, Wang F, Wang F, Wang Z, Liu K, Xu K, Huang Y, Shifa T A, Jiang C, Xiong J and He J 2016 Adv. Mater. 28 8051
[37]Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H, He K and Warner J H 2014 Chem. Mater. 26 6371
[38]Xu H J, Mi J S, Li Y, Zhang B, Cong R D, Fu G S and Yu W 2017 Chin. Phys. B 26 128102
[39]Shim J, Kang D H, Yoo G, Hong S T, Jung W S, Kuh B J, Lee B, Shin D, Ha K, Kim G S, Yu H Y, Baek J and Park J H 2014 Opt. Lett. 39 4204
Related articles from Frontiers Journals
[1] Jianguo Zhao, Kai Chen, Maogao Gong, Wenxiao Hu, Bin Liu, Tao Tao, Yu Yan, Zili Xie, Yuanyuan Li, Jianhua Chang, Xiaoxuan Wang, Qiannan Cui, Chunxiang Xu, Rong Zhang, and Youdou Zheng. Epitaxial Growth and Characteristics of Nonpolar $a$-Plane InGaN Films with Blue-Green-Red Emission and Entire In Content Range[J]. Chin. Phys. Lett., 2022, 39(4): 048101
[2] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 048101
[3] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 048101
[4] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 048101
[5] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 048101
[6] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 048101
[7] Ying-Xi Niu, Xiao-Yan Tang, Ren-Xu Jia, Ling Sang, Ji-Chao Hu, Fei Yang, Jun-Min Wu, Yan Pan, Yu-Ming Zhang. Influence of Triangle Structure Defect on the Carrier Lifetime of the 4H-SiC Ultra-Thick Epilayer[J]. Chin. Phys. Lett., 2018, 35(7): 048101
[8] Ze-Yang Ren, Jin-Feng Zhang, Jin-Cheng Zhang, Sheng-Rui Xu, Chun-Fu Zhang, Kai Su, Yao Li, Yue Hao. Growth and Characterization of the Laterally Enlarged Single Crystal Diamond Grown by Microwave Plasma Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(7): 048101
[9] Zhi-Gang Wang, Fei Pang. Poisoning of MoO$_{3}$ Precursor on Monolayer MoS$_{2}$ Nanosheets Growth by Tellurium-Assisted Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2017, 34(8): 048101
[10] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 048101
[11] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 048101
[12] Yang Zhang, Qing Wang, Xiao-Bin Zhang, Na Peng, Zhen-Qi Liu, Bing-Zhen Chen, Shan-Shan Huang, Zhi-Yong Wang. Application of AlGaInP with Sb Incorporation in Lattice-Matched 5-Junction Tandem Solar Cells[J]. Chin. Phys. Lett., 2017, 34(2): 048101
[13] Ying Zhao, Sheng-Rui Xu, Zhi-Yu Lin, Jin-Cheng Zhang, Teng Jiang, Meng-Di Fu, Jia-Duo Zhu, Qin Lu, Yue Hao. C-Implanted N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(12): 048101
[14] Guo-Cai Dong, D. V. Baarle, J. Frenken, Qi-Wen Tang. Graphene/Rh(111) Structure Studied Using In-Situ Scanning Tunneling Microscopy[J]. Chin. Phys. Lett., 2016, 33(11): 048101
[15] Jia-Min Gong, Quan Wang, Jun-Da Yan, Feng-Qi Liu, Chun Feng, Xiao-Liang Wang, Zhan-Guo Wang. Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer: Material Growth and Device Fabrication[J]. Chin. Phys. Lett., 2016, 33(11): 048101
Viewed
Full text


Abstract