Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 047102    DOI: 10.1088/0256-307X/37/4/047102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Pressure-Induced Metallization and Structural Phase Transition in the Quasi-One-Dimensional TlFeSe$_{2}$
Zi-Yi Liu1,2†, Qing-Xin Dong1,3†, Peng-Fei Shan1,3†, Yi-Yan Wang1,3, Jian-Hong Dai1,3, Rajesh Jana1,3, Ke-Yu Chen1,3, Jian-Ping Sun1,3, Bo-Sen Wang1,3,4, Xiao-Hui Yu1,3,4, Guang-Tong Liu1,3,4, Yoshiya Uwatoko5, Yu Sui2, Huai-Xin Yang1,3,4, Gen-Fu Chen1,3,4**, Jin-Guang Cheng1,3,4**
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physics, Harbin Institute of Technology, Harbin 150001
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
4Songshan Lake Materials Laboratory, Dongguan 523808
5Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
Cite this article:   
Zi-Yi Liu, Qing-Xin Dong, Peng-Fei Shan et al  2020 Chin. Phys. Lett. 37 047102
Download: PDF(1268KB)   PDF(mobile)(1264KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a comprehensive high-pressure study on the monoclinic TlFeSe$_{2}$ single crystal, which is an antiferromagnetic insulator with quasi-one-dimensional crystal structure at ambient pressure. It is found that TlFeSe$_{2}$ undergoes a pressure-induced structural transformation from the monoclinic phase to an orthorhombic structure above $P_{\rm c} \approx 13$ GPa, accompanied with a large volume collapse of $\Delta V/V_{0}=8.3{\%}$. In the low-pressure monoclinic phase, the insulating state is easily metallized at pressures above 2 GPa; while possible superconductivity with $T_{\rm c}^{\rm onset} \sim 2$ K is found to emerge above 30 GPa in the high-pressure phase. Such a great tunability of TlFeSe$_{2}$ under pressure indicates that the ternary $A$FeSe$_{2}$ system ($A$ = Tl, K, Cs, Rb) should be taken as an important platform for explorations of interesting phenomena such as insulator-metal transition, dimensionality crossover, and superconductivity.
Received: 06 March 2020      Published: 13 March 2020
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  74.62.Fj (Effects of pressure)  
  74.72.Cj (Insulating parent compounds)  
Fund: Supported by the National Key R&D Program of China (2018YFA0305700), the National Natural Science Foundation of China (11904391, 11834016, 11874400, 11888101, 11921004), the Beijing Natural Science Foundation (Z190008), the Strategic Priority Research Program and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (XDB25000000, QYZDB-SSW-SLH013), and the CAS Interdisciplinary Innovation Team (JCTD-2019-01). JPS acknowledges the support from the China Postdoctoral Science Foundation and the Postdoctoral Innovative Talent Program.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/047102       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/047102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zi-Yi Liu
Qing-Xin Dong
Peng-Fei Shan
Yi-Yan Wang
Jian-Hong Dai
Rajesh Jana
Ke-Yu Chen
Jian-Ping Sun
Bo-Sen Wang
Xiao-Hui Yu
Guang-Tong Liu
Yoshiya Uwatoko
Yu Sui
Huai-Xin Yang
Gen-Fu Chen
Jin-Guang Cheng
[1]Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
[2]Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[3]Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[4]Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761
[5]Norman M R 2011 Science 332 196
[6]Gao M, Lu Z Y and Xiang T 2015 Phys. Rev. B 91 045132
[7]Hu J P, Le C C and Wu X X 2015 Phys. Rev. X 5 041012
[8]Le C C, Zeng J F, Gu Y H, Cao G H and Hu J P 2018 Sci. Bull. 63 957
[9]Qin S S, Li Y X, Zhang Q, Le C C and Hu J P 2018 Front. Phys. 13 137502
[10]Zhao X, Ma F, Lu Z Y and Xiang T 2019 arXiv:1910.03545
[11]Bronger W, Kyas A and Müller P 1987 J. Solid State Chem. 70 262
[12]Asgerov E B, Dang N T, Beskrovnyy A I, Madadzada A I, Ismayilov D I, Mehdiyeva R N, Jabarov S H and Karimova E M 2015 Semiconductors 49 879
[13]Kutoglu A 1974 Naturwissenschaften 61 125
[14]Makovetskii G I and Kasinskii E I 1984 Inorg. Mater. 20 1514
[15]Seidov Z, Krug von Nidda H A, Hemberger J, Loidl A, Sultanov G, Kerimova E and Panfilov A 2001 Phys. Rev. B 65 014433
[16]Veliyev R G 2012 Semiconductors 46 1263
[17]Seidov Z, Krug von Nidda H A, Tsurkan V, Filippova I, Günther A, Najafov A, Aliyev M N, Vagizov F G, Kiiamov A G, Tagirov L R, Gavrilova T and Loidl A 2017 Bull. Russ. Acad. Sci.: Phys. 81 885
[18]Kerimova E M, Seidov F M, Mustafaeva S N and Abdinbekov S S 1999 Inorg. Mater. 35 106
[19]Luo Q, Foyevtsova K, Samolyuk G D, Reboredo F and Dagotto E 2014 Phys. Rev. B 90 035128
[20]Pashkin A, Dressel M and Kuntscher C A 2006 Phys. Rev. B 74 165118
[21]Zhang J, Jia Y, Wang X, Li Z, Duan L, Li W, Zhao J, Cao L, Dai G, Deng Z, Zhang S, Feng S, Yu R, Liu Q, Hu J, Zhu J and Jin C 2019 NPG Asia Mater. 11 60
[22]Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H and Uwatoko Y 2014 Rev. Sci. Instrum. 85 093907
[23]Asgerov E B, Dang N T, Ismayilov D I, Kichanov S E, Mehdiyeva R N, Madadzada A I, Jabarov S H, Kerimova E M and Lukin E V 2015 Mod. Phys. Lett. B 29 1550024
[24]Birch F 1947 Phys. Rev. 71 809
[25]Range K J, Engert G and Weiss A 1969 Solid State Commun. 7 1749
[26]Tinoco T, Polian A, Gomez D and Itie J P 1996 Phys. Status Solidi B 198 433
[27]Welz D, Deppe P, Schaefer W, Sabrowsky H and Rosenberg M 1989 J. Phys. Chem. Solids 50 297
[28]Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L and Wang N L 2009 Nature 457 565
[29]Zhang Q, Li G, Rhodes D, Kiswandhi A, Besara T, Zeng B, Sun J, Siegrist T, Johannes M D and Balicas L 2013 Sci. Rep. 3 1446
[30]Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295
[31]Ruan J, Jian S K, Zhang D, Yao H, Zhang H, Zhang S C and Xing D 2016 Phys. Rev. Lett. 116 226801
[32]Gonzalez J and Chervin J C 1993 Jpn. J. Appl. Phys. 32 575
[33]Werner A, Hochheimer H D and Jayaraman A 1981 Phys. Rev. B 23 3836
[34]Nishioka S, Kuriyaki H and Hirakawa K 1995 Synth. Met. 71 1877
[35]Giamarchi T 1991 Phys. Rev. B 44 2905
[36]Balicas L, Behnia K, Kang W, Canadell E, Auban-Senzier P, Jérome D, Ribault M and Fabre J M 1994 J. Phys. I 4 1539
[37]Moser J, Gabay M, Auban-Senzier P, Jerome D, Bechgaard K and Fabre J M 1998 Eur. Phys. J. B 1 39
[38]Dumm M, Loidl A, Fravel B W, Starkey K P, Montgomery L K and Dressel M 2000 Phys. Rev. B 61 511
[39]Jerome D 1982 Mol. Cryst. Liq. Cryst. 79 511
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 047102
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 047102
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 047102
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 047102
[5] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 047102
[6] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 047102
[7] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 047102
[8] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 047102
[9] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 047102
[10] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 047102
[11] Haiwei Li, Shusen Ye, Jianfa Zhao, Changqing Jin, and Yayu Wang. Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(1): 047102
[12] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 047102
[13] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 047102
[14] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 047102
[15] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 047102
Viewed
Full text


Abstract