CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Pressure-Stabilized New Phase of CaN$_{4}$ |
Xu-Han Shi, Bo Liu, Zhen Yao**, Bing-Bing Liu** |
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012
|
|
Cite this article: |
Xu-Han Shi, Bo Liu, Zhen Yao et al 2020 Chin. Phys. Lett. 37 047101 |
|
|
Abstract We propose a new CaN$_{4}$ high pressure structure with the $P2_{1}/m$ space group. The $P2_{1}/m$-CaN$_{4}$ structure is constituted by the infinite armchair N-chain. The dynamical stability and mechanical stability are verified by the calculations of phonon dispersion curves and elastic constants. The enthalpy difference calculation shows that the $P2_{1}/m$ phase is more stable than the reported P4$_{1}2_{1}$2 phase. The advantaged properties of $P2_{1}/m$-CaN$_{4}$, such as high nitrogen content (58.3%) and low polymerization pressure (18.3 GPa), allow it to be a potential high energy material. Band structure calculation shows that the $P2_{1}/m$-CaN$_{4}$ structure is a metallic phase. The nonpolar covalent single N–N bond is a sigma bond. The charge transfer between the Ca and N atoms results in an ionic bond interaction.
|
|
Received: 23 December 2019
Published: 24 March 2020
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.15.Dx
|
(Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))
|
|
71.20.Dg
|
(Alkali and alkaline earth metals)
|
|
|
Fund: Supported by the National Key Technology Research and Development Program of China under Grant No. 2018YFA0305900, the National Natural Science Foundation of China under Grant Nos. 11634004, 51320105007, 11604116 and 51602124, and the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China under Grant No. IRT1132. |
|
|
[1] | Hirshberg B, Gerber R B and Krylov A I 2014 Nat. Chem. 6 52 | [2] | Wu L, Tian R, Wan B, Liu H, Gong N, Chen P, Shen T, Yao Y, Gou H and Gao F 2018 Chem. Mater. 30 8476 | [3] | Zahariev F, Hu A, Hooper J, Zhang F and Woo T 2005 Phys. Rev. B 72 214108 | [4] | Pu C, Zhou D, Li Y, Liu H, Chen Z, Wang Y and Ma Y 2017 J. Phys. Chem. C 121 2669 | [5] | Chen Y, Cai X, Wang H, Wang H and Wang H 2018 Sci. Rep. 8 10670 | [6] | Eremets M I 2004 J. Chem. Phys. 120 10618 | [7] | Zhang J, Zeng Z, Lin H Q and Li Y L 2014 Sci. Rep. 4 4358 | [8] | McMahan A K and LeSar R 1985 Phys. Rev. Lett. 54 1929 | [9] | Wang X, Tian F, Wang L, Cui T, Liu B and Zou G 2010 J. Chem. Phys. 132 024502 | [10] | Mattson W D, Sanchez-Portal D, Chiesa S and Martin R M 2004 Phys. Rev. Lett. 93 125501 | [11] | Alemany M M G and Martins J L 2003 Phys. Rev. B 68 024110 | [12] | Martin R M and Needs R J 1992 Phys. Rev. B 46 11117 | [13] | Kotakoski J and Albe K 2008 Phys. Rev. B 77 144109 | [14] | Wang X, He Z, Ma Y, Cui T, Liu Z, Liu B, Li J and Zhou G 2007 J. Phys.: Condens. Matter 19 425226 | [15] | Ma Y, Oganov A R, Li Z, Xie Y and Kotakoski J 2009 Phys. Rev. Lett. 102 065501 | [16] | Mailhiot C, Yang L H and McMahan A K 1992 Phys. Rev. B 46 14419 | [17] | Wang X, Wang Y, Miao M, Zhong X, Lv J, Cui T, Li J, Chen L, Pickard C J and Ma Y 2012 Phys. Rev. Lett. 109 175502 | [18] | Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A and Boehler R 2004 Nat. Mater. 3 558 | [19] | Tomasino D, Kim M, Smith J and Yoo C S 2014 Phys. Rev. Lett. 113 205502 | [20] | Laniel D, Geneste G, Weck G, Mezouar M and Loubeyre P 2019 Phys. Rev. Lett. 122 066001 | [21] | Shen Y, Oganov A R, Qian G, Zhang J, Dong H, Zhu Q and Zhou Z 2015 Sci. Rep. 5 14204 | [22] | Steele B A and Oleynik I I 2016 Chem. Phys. Lett. 643 21 | [23] | Steele B A and Oleynik I I 2017 J. Phys. Chem. A 121 8955 | [24] | Williams A S, Steele B A and Oleynik I I 2017 J. Chem. Phys. 147 234701 | [25] | Peng F, Han Y, Liu H and Yao Y 2015 Sci. Rep. 5 16902 | [26] | Steele B A, Stavrous E, Prakapenka V B, Radousky H, Zaug J, Crowhurst J C and Oleynik I I 2017 AIP Conf. Proc. 1793 040016 | [27] | Zhang S, Zhao Z, Liu L and Yang G 2017 J. Power Sources 365 155 | [28] | Yu S, Huang B, Zeng Q, Oganov A R, Zhang L and Frapper G 2017 J. Phys. Chem. C 121 11037 | [29] | Bruls R J, Hintzen H T and Metselaar R 1999 J. Mater. Sci. 34 4519 | [30] | Parkin I P and Nartowski A M 1998 Polyhedron 17 2617 | [31] | Hao J, Li Y W, Wang J S, Ma C L, Huang L Y, Liu R, Cui Q L, Zou G T, Liu J and Li X D 2010 J. Phys. Chem. C 114 16750 | [32] | Römer S R, Schnick W and Kroll P 2009 J. Phys. Chem. C 113 2943 | [33] | Gregory D H, Bowman A, Baker C F and Weston D P 2000 J. Mater. Chem. 10 1635 | [34] | Zhu S, Peng F, Liu H, Majumdar A, Gao T and Yao Y 2016 Inorg. Chem. 55 7550 | [35] | Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 | [36] | Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 | [37] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | [38] | Chaput L, Togo A, Tanaka I and Hug G 2011 Phys. Rev. B 84 094302 | [39] | Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354 | [40] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | [41] | Hammer B, Hansen L B and Nørskov J K 1999 Phys. Rev. B 59 7413 | [42] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | [43] | Wei S, Li D, Liu Z, Wang W, Tian F, Bao K, Duan D, Liu B and Cui T 2017 J. Phys. Chem. C 121 9766 | [44] | Lv C W, Wang C J and Gu J B 2019 Acta Phys. Sin. 68 077102 (in Chinese) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|