Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 045202    DOI: 10.1088/0256-307X/37/4/045202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
A New Path to Improve High $\beta_{\rm p}$ Plasma Performance on EAST for Steady-State Tokamak Fusion Reactor
Baonian Wan** and the EAST team
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031
Cite this article:   
Baonian Wan and the EAST team 2020 Chin. Phys. Lett. 37 045202
Download: PDF(573KB)   PDF(mobile)(581KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High $\beta_{\rm p}$ scenario is foreseen to be a promising candidate operational mode for steady-state tokamak fusion reactors. Dedicated experiments on EAST and data analysis find that density gradient $\nabla n$ is a control knob to improve energy confinement in high $\beta_{\rm p}$ plasmas at low toroidal rotation as projected for a fusion reactor. Different from previously known turbulent stabilization mechanisms such as ${\boldsymbol E} \times {\boldsymbol B}$ shear and Shafranov shift, high density gradient can enhance the Shafranov shift stabilizing effect significantly in high $\beta_{\rm p}$ regime, giving that a higher density gradient is readily accessible in future fusion reactors with lower collisionality. This new finding is of great importance for the next-step fusion development because it may open a new path towards even higher energy confinement in the high $\beta_{\rm p}$ scenario. It has been demonstrated in the recent EAST experiments, i.e., a fully non-inductive high $\beta_{\rm p}$ ($\sim $2) H-mode plasma ($H_{98y2}\ge 1.3$) has been obtained for a duration over 100 current diffusion times, which sets another new world record of long-pulse high-performance tokamak plasma operation with the normalized performance approaching the ITER and CFETR regimes.
Received: 06 March 2020      Published: 25 March 2020
PACS:  52.75.-d (Plasma devices)  
  52.77.Fv (High-pressure, high-current plasmas)  
Fund: Supported by the National Magnetic Confinement Fusion Science Program of China under Grant No. 2015GB103000.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/045202       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/045202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Baonian Wan and the EAST team
[1]Gormezano C et al 2007 Progress in the ITER Physics Basis chap 6: Steady State Operation. Nucl. Fusion 47
[2]Sips A C C 2005 Plasma Phys. Control. Fusion 47 A19
[3]Mukhovatov V 2003 Plasma Phys. Control. Fusion 45 A235
[4]Garofalo A M 2011 Nucl. Fusion 51 083018
[5]Wan Y et al 2017 Nucl. Fusion 57 102009
[6]Wan B et al 2019 Nucl. Fusion 59 112003
[7]Wan B et al 2017 Nucl. Fusion 57 102019
[8]Li J et al 2013 Nat. Phys. 9 817
[9]Liu F K et al 2015 Nucl. Fusion 55 123022
[10]Garofalo A M et al 2017 Nucl. Fusion 57 076037
[11]Gong X 2017 Plasma Sci. Technol. 19 032001
[12]Gong X et al 2019 Nucl. Fusion 59 086030
[13]Qian J P et al 2017 Nucl. Fusion 57 056008
[14]Ding S et al 2017 Phys. Plasmas 24 056114
[15]Huang J et al 2020 Plasma Phys. Control. Fusion 62 014019
[16]Garofalo A M et al 2015 Nucl. Fusion 55 123025
[17]Pan C et al 2017 Nucl. Fusion 57 036018
[18]Garofalo A M et al 2018 Plasma Phys. Control. Fusion 60 014043
[19]Liu H Q et al 2016 Rev. Sci. Instrum. 87 11D903
[20]Kotschenreuther M et al 2019 The 61st Annual Meeting of the American Physical Society, Division of Plasma Physics (Fort Lauderdale, Florida 21–25 October 2019) UP10.100020 http://meetings.aps.org/Meeting/DPP19/Session/UP10.20
[21]Angioni C et al 2003 Phys. Plasmas 10 3225
[22]Weisen H et al 2005 Nucl. Fusion 45 L1
[23]Zhuang G et al 2019 Nucl. Fusion 59 112010
Related articles from Frontiers Journals
[1] YIN Long-Cheng, LUAN Sen, LV Guo-Hua, WANG Xing-Quan, HUANG Jun, JIN Hui, FENG Ke-Cheng, YANG Si-Ze. Effect of Silane Flow Rate on Structure and Corrosion Resistance of Ti-Si-N Thin Films Deposited by a Hybrid Cathodic Arc and Chemical Vapour Process[J]. Chin. Phys. Lett., 2008, 25(11): 045202
[2] LI Xiang-Zhou, ZHANG Xian-Hui, HE Ping, NIU Er-Wu, XIA Yuan-Yu, HUANG Jun, FENG Ke-Cheng, YANG Si-Ze. Effect of Substrate Bias on Microstructures of Zirconia Thin Films Deposited by Cathodic Vacuum Arc[J]. Chin. Phys. Lett., 2007, 24(6): 045202
[3] LI Li, NIU Er-Wu, LV Guo-Hua, FENG Wen-Ran, GU Wei-Chao, CHEN Guang-Liang, ZHANG Gu-Ling, FAN Song-Hua, LIU Chi-Zi, YANG Si-Ze. Preparation and Microstructure of Tantalum Nitride Thin Film by Cathodic Arc Deposition[J]. Chin. Phys. Lett., 2006, 23(11): 045202
[4] NIU Er-Wu, FAN Song-Hua, LI Li, LU Guo-Hua, FENG Wen-Ran, ZHANG Gu-Ling, YANG Si-Ze. Deposition of TiN Films by Novel Filter Cathodic Arc Technique[J]. Chin. Phys. Lett., 2006, 23(6): 045202
[5] CHEN Guang-chao, DU Xiao-long, JIANG De-yi, YAO Xin-zi. Application of Electron Cyclotron Resonance Assisted Plasma in GaN Deposition[J]. Chin. Phys. Lett., 1998, 15(10): 045202
[6] WANG Xi-lu*, Akira Mizuno, Shijin Katsura. A Novel Sterilization Method Using Pulsed Discharge Plasma [J]. Chin. Phys. Lett., 1998, 15(1): 045202
[7] ZHANG Hai-feng, MA Yu-guang, TIAN Wen-jing, SHEN Jia-cong, TANG Jian-guo*, LIU Shi-yong*. Photoluminescence and Electroluminescence from Plasma Ploymerized Naphthalene Films[J]. Chin. Phys. Lett., 1996, 13(10): 045202
[8] YAN Pengxun, YANG Si-ze, YANG Jie, LI Qing, LI Bing, LIU Chizi, CHEN Xishen. High-Power-Density Plasma Deposition of Diamond-Like Carbons Films [J]. Chin. Phys. Lett., 1994, 11(9): 045202
[9] LI Dejun, ZHAO Jie. Surface Modification of Hexamethylated Disiloxane Plasma Polymerized Medical Polyurethane [J]. Chin. Phys. Lett., 1994, 11(2): 045202
[10] LI Dejun, ZHAO Jie, GU Hanqing*, LU Mozhu*, DING Fuqing*, HU Jianfang**. Surface Modification of Medical Polyurethane by Plasma Treatment[J]. Chin. Phys. Lett., 1992, 9(2): 045202
[11] ZHONG Quande. Influence of Modified Collisional Damping on Saturation of Plasma Beat Waves[J]. Chin. Phys. Lett., 1991, 8(10): 045202
Viewed
Full text


Abstract