Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 044205    DOI: 10.1088/0256-307X/37/4/044205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects
Xuannan Wu1†, Guanwen Yuan1†, Rui Zhu1, Jicheng Wang3, Fuhua Gao1,4, Feiliang Chen2**, Yidong Hou1,4**
1College of Physics, Sichuan University, Chengdu 610064
2Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610299
3School of Science, Jiangnan University, Wuxi 214122
4Key Laboratory of High Energy Density Physics (Ministry of Education), Sichuan University, Chengdu 610064
Cite this article:   
Xuannan Wu, Guanwen Yuan, Rui Zhu et al  2020 Chin. Phys. Lett. 37 044205
Download: PDF(867KB)   PDF(mobile)(858KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High performance optical diode-like devices are highly desired in future practical nano-photonic devices with strong directional selectivity. We demonstrate a kind of giant broadband reciprocity optical diode-like devices by simultaneously using the directional Mie scattering effect and the asymmetric grating diffraction effect. The maximum asymmetric subtraction and the asymmetric transmission ratio can reach nearly 100% and 40 dB at specified wavelength, respectively. In a wide waveband from 500 nm to 800 nm, the asymmetric subtraction and the ratio keep larger than 80% and 3.5 dB, respectively, even under oblique incidence. To the best of our knowledge, this is the best one-way-transmission effect observed in the reciprocity optical diode-like devices. In addition, we further demonstrate that this one-way-transmission effect can bring an effective absorption enhancement on gold films. The giant, broadband and angle-insensitive one-way-transmission effect demonstrated here is far beyond the well-known anti-reflection effect in the light-trapping devices and will bring new design philosophy for nano-photonic devices.
Received: 04 November 2019      Published: 24 March 2020
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Fx (Diffraction and scattering)  
  81.07.Bc (Nanocrystalline materials)  
  81.40.Tv (Optical and dielectric properties related to treatment conditions)  
Fund: Supported by the National Natural Science Foundation of China under Grant No. 11604227.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/044205       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/044205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xuannan Wu
Guanwen Yuan
Rui Zhu
Jicheng Wang
Fuhua Gao
Feiliang Chen
Yidong Hou
[1]Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M and Qi M 2012 Science 335 447
[2]Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C and Ross C 2011 Nat. Photon. 5 758
[3]Yu Z and Fan S 2009 Nat. Photon. 3 91
[4]Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y and Scherer A 2011 Science 333 729
[5]Lei H U A N G, Yun-Hui F A N, Shan W U et al 2015 Chin. Phys. Lett. 32 094101
[6]Liu D Y, Luo X Y, Liu J J et al 2013 Chin. Phys. B 22 124202
[7]Guo J J, Wang M S and Huang W X 2017 Chin. Phys. B 26 124211
[8]Rostami A 2007 Opt. Laser Technol. 39 1059
[9]Gallo K, Assanto G, Parameswaran K R and Fejer M M 2001 Appl. Phys. Lett. 79 314
[10]Soljačić M, Luo C Y, Joannopoulos J D and Fan S H 2003 Opt. Lett. 28 637
[11]Wu S Y, Xu Z M, Shen S L, Wu J F and Li C 2019 Opt. Commun. 444 127
[12]Lira H, Yu Z, Fan S and Lipson M 2012 Phys. Rev. Lett. 109 033901
[13]Liu D and Gao Y 2018 AIP Adv. 8 095011
[14]Kang M, Butsch A and Russell P S J 2011 Nat. Photon. 5 549
[15]Haus H A 1984 Waves and Fields in Optoelectronics (Prentice: Prentice-Hall)
[16]Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popovic M, Melloni A and Joannopoulos J D 2013 Nat. Photon. 7 579
[17]Zhu R, Wu X, Hou Y, Zheng G, Zhu J and Gao F 2018 Sci. Rep. 8 999
[18]Stolarek M, Yavorskiy D, Kotyński R, Rodríguez C J Z, Łusakowski J L and Szoplik T 2013 Opt. Lett. 38 839
[19]Xu J, Cheng C, Kang M, Chen J, Zheng Z, Fan Y X and Wang H T 2011 Opt. Lett. 36 1905
[20]Cakmakyapan S, Serebryannikov A E, Caglayan H and Ozbay E 2010 Opt. Lett. 35 2597
[21]Fedotov V, Mladyonov P, Prosvirnin S, Rogacheva A, Chen Y and Zheludev N 2006 Phys. Rev. Lett. 97 167401
[22]Fedotov V, Schwanecke A, Zheludev N, Khardikov V and Prosvirnin S 2007 Nano Lett. 7 1996
[23]Menzel C, Helgert C, Rockstuhl C, Kley E B, Tünnermann A, Pertsch T and Lederer F 2010 Phys. Rev. Lett. 104 253902
[24]Callewaert F, Butun S, Li Z and Aydin K 2016 Sci. Rep. 6 32577
[25]Liu V, Miller D A and Fan S 2012 Opt. Express 20 28388
[26]Sun C H, Min W L, Linn N C, Jiang P and Jiang B 2007 Appl. Phys. Lett. 91 231105
[27]Huang Y F, Chattopadhyay S, Jen Y J, Peng C Y, Liu T A, Hsu Y K, Pan C L, Lo H C, Hsu C H and Chang Y H 2007 Nat. Nanotechnol. 2 770
[28]Xu D X, Post E, Lapointe J, Schmid J H, Cheben P and Janz S 2007 Opt. Lett. 32 1794
[29]Cai J and Qi L 2015 Mater. Horiz. 2 37
[30]Fung H W M, So S, Kartub K, Loget G and Corn R M 2017 J. Phys. Chem. C 121 22377
[31]So S, Han W M F, Kartub K, Maley A M and Corn R M 2017 J. Phys. Chem. Lett. 8 576
[32]Toma M, Loget G and Corn R M 2013 Nano Lett. 13 6164
[33]Spinelli P, Verschuuren M A and Polman A 2012 Nat. Commun. 3 692
[34]Lee Y J, Ruby D S, Peters D W, Mckenzie B B and Hsu J W 2008 Nano Lett. 8 1501
[35]Gaucher A, Cattoni A, Dupuis C, Chen W, Cariou R, Foldyna M, Lalouat L C, Drouard E, Seassal C and Cabarrocas P R I 2016 Nano Lett. 16 5358
[36]Li C, Xia L, Gao H, Shi R, Sun C, Shi H and Du C 2012 Opt. Express 20 A589
[37]Jia Z, Zongfu Y, Burkhard G F, Ching-Mei H, Connor S T, Yueqin X, Qi W, Michael M G, Shanhui F and Yi C 2009 Nano Lett. 9 279
[38]Southwell W H 1983 Opt. Lett. 8 584
[39]Lalanne P 1996 Appl. Opt. 35 5369
[40]Fu Y H, Kuznetsov A I, Miroshnichenko A E, Yu Y F and Luk'yanchuk B 2013 Nat. Commun. 4 1527
[41]Born M and Wolf E 2013 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Amsterdam: Elsevier)
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 044205
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 044205
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 044205
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 044205
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 044205
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 044205
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 044205
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 044205
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 044205
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 044205
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 044205
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 044205
[13] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 044205
[14] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 044205
[15] Ju-Geng Li, Sen-Miao Yang, Xin Chen, Nai-Feng Zhuang, Qi-Biao Zhu, An-Hua Wu, Xian Lin, Guo-Hong Ma, Zuan-Ming Jin, Jian-Quan Yao. Temperature-Dependent Dielectric Characterization of Magneto-Optical Tb$_{3}$Sc$_{2}$Al$_{3}$O$_{12}$ Crystal Investigated by Terahertz Time-Domain Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(4): 044205
Viewed
Full text


Abstract