CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States |
Na Jiang* and Min Lu |
Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China |
|
Cite this article: |
Na Jiang and Min Lu 2020 Chin. Phys. Lett. 37 117302 |
|
|
Abstract We study the behavior of two-dimensional electron gas in the fractional quantum Hall (FQH) regime in the presence of disorder potential. The principal component analysis is applied to a set of disordered Laughlin ground state model wave function to enable us to distill the model wave function of the pure Laughlin state. With increasing the disorder strength, the ground state wave function is expected to deviate from the Laughlin state and eventually leave the FQH phase. We investigate the phase transition from the Laughlin state to a topologically trivial state by analyzing the overlap between the random sample wave functions and the distilled ground state wave function. It is proposed that the cross point of the principal component amplitude and its counterpart is the critical disorder strength, which marks the collapse of the FQH regime.
|
|
Received: 02 September 2020
Published: 08 November 2020
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11674282), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000). |
|
|
[1] | Haldane F D M 1983 Phys. Rev. Lett. 51 605 |
[2] | Jain J K 2007 Composite Fermions (Cambridge: Cambridge University Press) |
[3] | Moore G and Read N 1991 Nucl. Phys. B 360 362 |
[4] | Bernevig B A and Haldane F D M 2008 Phys. Rev. Lett. 100 246802 |
[5] | Laughlin R B 1983 Phys. Rev. Lett. 50 1395 |
[6] | Wen X G and Niu Q 1990 Phys. Rev. B 41 9377 |
[7] | Wen X G 1992 Int. J. Mod. Phys. B 6 1711 |
[8] | Wen X G 1991 Phys. Rev. B 44 5708 |
[9] | Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504 |
[10] | Haldane F D M 2011 Phys. Rev. Lett. 107 116801 |
[11] | Qiu R Z, Haldane F D M, Wan X, Yang K and Yi S 2012 Phys. Rev. B 85 115308 |
[12] | Yang L P, Li Q and Hu Z X 2018 Chin. Phys. B 27 087306 |
[13] | Wang H, Narayanan R, Wan X and Zhang F C 2012 Phys. Rev. B 86 035122 |
[14] | Sheng D N, Wan X, Rezayi E H, Yang K, Bhatt R N and Haldane F D M 2003 Phys. Rev. Lett. 90 256802 |
[15] | Wan X, Sheng D N, Rezayi E H, Yang K, Bhatt R N and Haldane F D M 2005 Phys. Rev. B 72 075325 |
[16] | Liu Z and Bhatt R N 2016 Phys. Rev. Lett. 117 206801 |
[17] | Liu Z and Bhatt R N 2017 Phys. Rev. B 96 115111 |
[18] | Zhu W and Sheng D N 2019 Phys. Rev. Lett. 123 056804 |
[19] | Lu M, Jiang N and Wan X 2019 Chin. Phys. Lett. 36 087301 |
[20] | Jiang N, Ke S Y, Ji H X, Wang H, Hu Z X and Wan X 2020 Phys. Rev. B 102 115140 |
[21] | Goodfellow I, Bengio Y and Courville A 2016 Deep Learning (New York: MIT Press) |
[22] | Pearson K 1901 Philos. Mag. 2 559 |
[23] | Wang L 2016 Phys. Rev. B 94 195105 |
[24] | Wang C and Zhai H 2017 Phys. Rev. B 96 144432 |
[25] | Wetzel S J 2017 Phys. Rev. E 96 022140 |
[26] | Hu W, Singh R R P and Scalettar R T 2017 Phys. Rev. E 95 062122 |
[27] | Costa N C, Hu W, Bai Z J, Scalettar R T and Singh R R P 2017 Phys. Rev. B 96 195138 |
[28] | Wang C and Zhai H 2018 Front. Phys. 13 130507 |
[29] | Yang W Q, Li Q, Yang L P and Hu Z X 2019 Chin. Phys. B 28 067303 |
[30] | Banerjee M, Heiblum M, Umansky V, Feldman D E, Oreg Y and Stern A 2018 Nature 559 205 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|