CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers |
Yingda Chen1,2, Dong Zhang1,2*, and Kai Chang1,2,3* |
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 2CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China 3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
|
|
Cite this article: |
Yingda Chen, Dong Zhang, and Kai Chang 2020 Chin. Phys. Lett. 37 117102 |
|
|
Abstract We study theoretically the exciton Bose–Einstein condensation and exciton vortices in a two-dimensional (2D) perovskite (PEA)${_2}$PbI${_4}$ monolayer. Combining the first-principles calculations and the Keldysh model, the exciton binding energy of in a (PEA)${_2}$PbI${_4}$ monolayer can approach hundreds of meV, which make it possible to observe the excitonic effect at room temperature. Due to the large exciton binding energy, and hence the high density of excitons, we find that the critical temperature of the exciton condensation could approach the liquid nitrogen regime. In the presence of perpendicular electric fields, the dipole-dipole interaction between excitons is found to drive the condensed excitons confined in (PEA)${_2}$PbI${_4}$ monolayer flakes into patterned vortices, as the evolution time of vortex patterns is comparable to the exciton lifetime.
|
|
Received: 02 October 2020
Published: 08 November 2020
|
|
PACS: |
71.35.-y
|
(Excitons and related phenomena)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
68.90.+g
|
(Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)
|
|
|
Fund: Supported by the National Key R$\&$D Programme of China (Grant Nos. 2017YFA0303400 and 2016YFE0110000), the National Natural Science Foundation of China (Grant Nos. 11574303 and 11504366), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2018148), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000). |
|
|
[1] | Snoke D W, Wolfe J P and Mysyrowicz A 1990 Phys. Rev. Lett. 64 2543 |
[2] | Butov L V, Lai C W, Ivanov A L, Gossard A C and Chemla D S 2002 Nature 417 47 |
[3] | Butov L V, Zrenner A, Abstreiter G, Bohm G and Weimann G 1994 Phys. Rev. Lett. 73 304 |
[4] | Rayfield G W and Reif F 1964 Phys. Rev. 136 A1194 |
[5] | Yarmchuk E J, Gordon M J V and Packard R E 1979 Phys. Rev. Lett. 43 214 |
[6] | Keeling J and Berloff N G 2008 Phys. Rev. Lett. 100 250401 |
[7] | Lagoudakis K G, Ostatnicky T, Kavokin A V, Rubo Y G, André R and Deveaud-Plédran B 2009 Science 326 974 |
[8] | Roy I, Dutta S, Choudhury A N R, Basistha S, Maccari I, Mandal S, Jesudasan J, Bagwe V, Castellani C, Benfatto L and Raychaudhuri P 2019 Phys. Rev. Lett. 122 047001 |
[9] | Chen Y D, Huang Y W, Lou W K, Cai Y Y and Chang K 2020 Phys. Rev. B 102 165413 |
[10] | Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 |
[11] | You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G and Yang Y 2013 Nat. Commun. 4 1446 |
[12] | Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542 |
[13] | Zhao W Y, Ku Z L, Lv L P, Lin X, Peng Y, Jin Z M, Ma G H and Yao J Q 2019 Chin. Phys. Lett. 36 028401 |
[14] | Jena A K, Kulkarni A and Miyasaka T 2019 Chem. Rev. 119 3036 |
[15] | Nayak P K, Mahesh S, Snaith H J and Cahen D 2019 Nat. Rev. Mater. 4 269 |
[16] | Tennyson E M, Doherty T A S and Stranks S D 2019 Nat. Rev. Mater. 4 573 |
[17] | Xie W R, Liu B, Tao T, Zhang G G, Zhang B H, Xie Z L, Chen P, Chen D J and Zhang R 2017 Chin. Phys. Lett. 34 068103 |
[18] | Grancini G and Nazeeruddin M K 2019 Nat. Rev. Mater. 4 4 |
[19] | Quan L N, Yuan M, Comin R, Voznyy O, Beauregard E M, Hoogland S, Buin A, Kirmani A R, Zhao K, Amassian A, Kim D H and Sargent E H 2016 J. Am. Chem. Soc. 138 2649 |
[20] | Li Z, Klein T R, Kim D H, Yang M, Berry J J, van Hest M F A M and Zhu K 2018 Nat. Rev. Mater. 3 18017 |
[21] | Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643 |
[22] | Ishihara T, Takahashi J and Goto T 1990 Phys. Rev. B 42 11099 |
[23] | Hong X, Ishihara T and Nurmikko A V 1992 Phys. Rev. B 45 6961 |
[24] | Yaffe O, Chernikov A, Norman Z M, Zhong Y, thapillai A V, van der Zande A, Owen J S and Heinz T F 2015 Phys. Rev. B 92 045414 |
[25] | Fang H H, Yang J, Adjokatse S, Tekelenburg E, minga M E K, Duim H, Ye J, Blake G R, Even J and Loi M A 2020 Adv. Funct. Mater. 30 1907979 |
[26] | Smith M D, Connor B A and Karunadasa H I 2019 Chem. Rev. 119 3104 |
[27] | Du K Z, Tu Q, Zhang X, Han Q, Liu J, Zauscher S and Mitzi D B 2017 Inorg. Chem. 56 9291 |
[28] | Do T T H, Aguila A G D, Zhang D, Xing J, Liu S, Prosnikov M A, Gao W, Chang K, Christianen P C M and Xiong Q 2020 Nano Lett. 20 5141 |
[29] | Keldysh L V 1979 Sov. Phys.-JETP 29 658 |
[30] | Cheng B, Li T Y, Maity P, Wei P C, Nordlund D, Ho K T, Lien D H, Lin C H, Liang R Z, Miao X, Ajia I A, Yin J, Sokaras D, Javey A, Roqan I S, Mohammed O F and He J H 2018 Commun. Phys. 1 80 |
[31] | Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus C A 1985 Phys. Rev. B 32 1043 |
[32] | Bao W and Cai Y 2015 SIAM J. Appl. Math. 75 492 |
[33] | Bao W and Cai Y 2013 Kinet. & Relat. Models 6 1 |
[34] | Bao W and Cai Y 2018 Commun. Comput. Phys. 24 899 |
[35] | Sierra J, Kasimov A, Markowich P and Weishäupl R M 2015 J. Nonlinear Sci. 25 709 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|