NUCLEAR PHYSICS |
|
|
|
|
Critical Temperature of Deconfinement in a Constrained Space Using a Bag Model at Vanishing Baryon Density |
Zonghou Han , Baoyi Chen , and Yunpeng Liu* |
Department of Applied Physics, Tianjin University, Tianjin 300350, China |
|
Cite this article: |
Zonghou Han , Baoyi Chen , and Yunpeng Liu 2020 Chin. Phys. Lett. 37 112501 |
|
|
Abstract The geometry of fireballs in relativistic heavy ion collisions is approximated by a static box, which is infinite in two directions while finite in the other direction. The critical temperature of deconfinement phase transition is calculated explicitly in the MIT bag model at vanishing baryon density. It is found that the critical temperature shifts to a value higher than that in an unconstrained space.
|
|
Received: 05 September 2020
Published: 08 November 2020
|
|
PACS: |
25.75.Nq
|
(Quark deconfinement, quark-gluon plasma production, and phase transitions)
|
|
12.38.Mh
|
(Quark-gluon plasma)
|
|
64.60.an
|
(Finite-size systems)
|
|
12.39.Ba
|
(Bag model)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11547043 and 11705125), and the “Qinggu” Project of Tianjin University (Grant No. 1701). |
|
|
[1] | Pochodzalla J et al. 1995 Phys. Rev. Lett. 75 1040 |
[2] | Muller H and Serot B D 1995 Phys. Rev. C 52 2072 |
[3] | Ma Y G 1999 Phys. Rev. Lett. 83 3617 |
[4] | Ma Y G et al. 2005 Phys. Rev. C 71 054606 |
[5] | Natowitz J B, Hagel K, Ma Y, Murray M, Qin L, Wada R and Wang J 2002 Phys. Rev. Lett. 89 212701 |
[6] | Ma Y G et al. 1997 Phys. Lett. B 390 41 |
[7] | Liu H L, Ma Y G and Fang D Q 2019 Phys. Rev. C 99 054614 |
[8] | Ma C W and Ma Y G 2018 Prog. Part. Nucl. Phys. 99 120 |
[9] | Borsanyi S, Fodor Z, Hoelbling C, Katz S D, Krieg S, Ratti C and Szabo K K 2010 J. High Energy Phys. 2010(09) 073 |
[10] | Ding H T, Karsch F and Mukherjee S 2015 Int. J. Mod. Phys. E 24 1530007 |
[11] | Fukushima K and Hatsuda T 2011 Rep. Prog. Phys. 74 014001 |
[12] | Sun K J, Ko C M, Cao S S and Li F 2020 arXiv:2004.05754 [nucl-th] |
[13] | Philipsen O 2008 Prog. Theor. Phys. Suppl. 174 206 |
[14] | Fraga E S, Kurkela A and Vuorinen A 2016 Eur. Phys. J. A 52 49 |
[15] | Luo X and Xu N 2017 Nucl. Sci. Tech. 28 112 |
[16] | Sun K J, Chen L W, Ko C M and Xu Z 2017 Phys. Lett. B 774 103 |
[17] | Schuster T (NA49 collaboration) 2009 Proc. Sci. 71 029 |
[18] | Gao J H, Ma G L, Pu S and Wang Q 2020 Nucl. Sci. Tech. 31 90 |
[19] | Tang Z B, Zha W M and Zhang Y F 2020 Nucl. Sci. Tech. 31 81 |
[20] | Liu Y C and Huang X G 2020 Nucl. Sci. Tech. 31 56 |
[21] | Zhao J and Wang F 2019 Prog. Part. Nucl. Phys. 107 200 |
[22] | Wang F Q and Zhao J 2018 Nucl. Sci. Tech. 29 179 |
[23] | Zhao J, Zhou K, Chen S and Zhuang P 2020 Prog. Part. Nucl. Phys. 114 103801 |
[24] | He Y, Chao W, Gao C and Li X 1996 Phys. Rev. C 54 857 |
[25] | Spieles C, Stoecker H and Greiner C 1998 Phys. Rev. C 57 908 |
[26] | Ladrem M and Ait-El-Djoudi A 2005 Eur. Phys. J. C 44 257 |
[27] | Kiriyama O, Kodama T and Koide T 2006 arXiv:hep-ph/0602086 |
[28] | Palhares L, Fraga E and Kodama T 2011 J. Phys. G 38 085101 |
[29] | Yasutake N, Chen H, Maruyama T and Tatsumi T 2016 J. Phys.: Conf. Ser. 665 012068 |
[30] | Spieles C, Bleicher M and Greiner C 2019 J. Phys. G 46 025101 |
[31] | Shi C, Jia W, Sun A, Zhang L and Zong H 2018 Chin. Phys. C 42 023101 |
[32] | Xu K and Huang M 2020 Phys. Rev. D 101 074001 |
[33] | Cheng P, Luo X, Ping J and Zong H 2019 Phys. Rev. D 100 014027 |
[34] | Wong C Y 1994 Introduction to High-Energy Heavy-Ion Collisions (World Scientific) p 532 |
[35] | Sollfrank J, Huovinen P, Kataja M, Ruuskanen P, Prakash M and Venugopalan R 1997 Phys. Rev. C 55 392 |
[36] | Tanabashi M et al. (Particle Data Group) 2018 Phys. Rev. D 98 030001 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|