CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$ |
Wen-Jian Shi1, Ze-Ming Kan1, Chuan-Hui Cheng2*, Wen-Hui Li2, Hang-Qi Song2, Meng Li2, Dong-Qi Yu1*, Xiu-Yun Du1, Wei-Feng Liu3, Sheng-Ye Jin4, and Shu-Lin Cong2 |
1School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China 2School of Physics, Dalian University of Technology, Dalian 116024, China 3Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China 4State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China
|
|
Cite this article: |
Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng et al 2020 Chin. Phys. Lett. 37 108401 |
|
|
Abstract We fabricated Sb$_{2}$Se$_{3}$ thin film solar cells using tris(8-hydroxy-quinolinato) aluminum (Alq$_{3}$) as an electron transport layer by vacuum thermal evaporation. Another small organic molecule of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB) was used as a hole transport layer. We took ITO/NPB/Sb$_{2}$Se$_{3}$/Alq$_{3}$/Al as the device architecture. An open circuit voltage ($V_{\rm oc}$) of 0.37 V, a short circuit current density ($J_{\rm sc}$) of 21.2 mA/cm$^{2}$, and a power conversion efficiency (PCE) of 3.79% were obtained on an optimized device. A maximum external quantum efficiency of 73% was achieved at 600 nm. The $J_{\rm sc}$, $V_{\rm oc}$, and PCE were dramatically enhanced after introducing an electron transport layer of Alq$_{3}$. The results suggest that the interface state density at Sb$_{2}$Se$_{3}$/Al interface is decreased by inserting an Alq$_{3}$ layer, and the charge recombination loss in the device is suppressed. This work provides a new electron transport material for Sb$_{2}$Se$_{3}$ thin film solar cells.
|
|
Received: 14 July 2020
Published: 29 September 2020
|
|
PACS: |
84.60.Jt
|
(Photoelectric conversion)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
|
Fund: Supported by the High Level Talents Project of Hainan Basic and Applied Research Program (Natural Science) (Grant No. 2019RC118), and the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in DICP (Grant No. SKLMRD-K202005). |
|
|
[1] | Green M A, Hishikawa Y, Dunlop E D et al. 2018 Prog. Photovoltaics 26 427 |
[2] | Jackson P, Wuerz R, Hariskos D et al. 2016 Phys. Status Solidi RRL 10 583 |
[3] | Liu X, Chen J, Luo Met et al. 2014 ACS Appl. Mater. & Interfaces 6 10687 |
[4] | Chen C, Li W, Zhou Y et al. 2015 Appl. Phys. Lett. 107 043905 |
[5] | Zhou Y, Leng M, Xia Z et al. 2014 Adv. Energy Mater. 4 1301846 |
[6] | Voutsas G P, Papazoglou A G, Rentzeperis P J and Siapkas D 1985 Z. Kristallogr. 171 261 |
[7] | Luo M, Leng M, Liu X et al. 2014 Appl. Phys. Lett. 104 173904 |
[8] | Zhou Y, Wang L, Chen S et al. 2015 Nat. Photon. 9 409 |
[9] | Wen X, Chen C, Lu S et al. 2018 Nat. Commun. 9 2179 |
[10] | Kondrotas R, Zhang J, Wang C and Tang J 2019 Sol. Energy Mater. Sol. Cells 199 16 |
[11] | Liang G X, Zhang X H, Ma H L et al. 2017 Sol. Energy Mater. Sol. Cells 160 257 |
[12] | Liang G X, Zheng Z H, Fan P et al. 2018 Sol. Energy Mater. Sol. Cells 174 263 |
[13] | Hutter O S, Phillips L J, Durose K and Major J D 2018 Sol. Energy Mater. Sol. Cells 188 177 |
[14] | Li D B, Yin X, Grice C R et al. 2018 Nano Energy 49 346 |
[15] | Ngo T T, Chavhan S, Kosta I et al. 2014 ACS Appl. Mater. & Interfaces 6 2836 |
[16] | Choi Y C and Il S 2015 Adv. Funct. Mater. 25 2892 |
[17] | Choi Y C, Lee D U, Noh J H, Kim E K and Il S 2014 Adv. Funct. Mater. 24 3587 |
[18] | Choi Y C, Lee Y H, Im S H et al. 2014 Adv. Funct. Mater. 4 1301680 |
[19] | Wang W, Wang X, Chen G et al. 2018 Sol. RRL 2 1800208 |
[20] | Shi X, Zhang X, Tian Y, Shen C, Wang C and Gao H J 2012 Appl. Surf. Sci. 258 2169 |
[21] | Tang R, Wang X, Lian W et al. 2020 Nat. Energy 5 587 |
[22] | Messina S, Nair M T S and Nair P K 2009 J. Electrochem. Soc. 156 H327 |
[23] | Leng M, Luo M, Chen C, Qin S et al. 2014 Appl. Phys. Lett. 105 083905 |
[24] | Li Z, Liang X, Li G, Liu H et al. 2019 Nat. Commun. 10 125 |
[25] | Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510 |
[26] | Zhang L, Li Y, Li C et al. 2017 ACS Nano 11 12753 |
[27] | Polman A, Knight M, Garnett E C, Ehrler B and Sinke W C 2016 Science 352 aad4424 |
[28] | Li G, Li Z, Liang X et al. 2019 ACS Appl. Mater. & Interfaces 11 828 |
[29] | Wu C, Jiang C, Wang X et al. 2019 ACS Appl. Mater. & Interfaces 11 3207 |
[30] | Wang L, Li D B, Li K et al. 2017 Nat. Energy 2 17046 |
[31] | Chen C, Zhao Y, Lu S et al. 2017 Adv. Energy Mater. 7 1700866 |
[32] | Lu S, Zhao Y, Chen C, Zhou Y et al. 2018 Adv. Electron. Mater. 4 1700329 |
[33] | Mihailetchi V D, Wildeman J and Blom P W M 2005 Phys. Rev. Lett. 94 126602 |
[34] | Koster L J A, Mihailetchi V D, Xie H and Blom P W M 2005 Appl. Phys. Lett. 87 203502 |
[35] | Chu T Y and Song O K 2007 Appl. Phys. Lett. 90 203512 |
[36] | Malliaras G G, Shen Y and Dunlap D H 2001 Appl. Phys. Lett. 79 2582 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|