Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 108401    DOI: 10.1088/0256-307X/37/10/108401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$
Wen-Jian Shi1, Ze-Ming Kan1, Chuan-Hui Cheng2*, Wen-Hui Li2, Hang-Qi Song2, Meng Li2, Dong-Qi Yu1*, Xiu-Yun Du1, Wei-Feng Liu3, Sheng-Ye Jin4, and Shu-Lin Cong2
1School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China
2School of Physics, Dalian University of Technology, Dalian 116024, China
3Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China
4State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China
Cite this article:   
Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng et al  2020 Chin. Phys. Lett. 37 108401
Download: PDF(1215KB)   PDF(mobile)(1205KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We fabricated Sb$_{2}$Se$_{3}$ thin film solar cells using tris(8-hydroxy-quinolinato) aluminum (Alq$_{3}$) as an electron transport layer by vacuum thermal evaporation. Another small organic molecule of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB) was used as a hole transport layer. We took ITO/NPB/Sb$_{2}$Se$_{3}$/Alq$_{3}$/Al as the device architecture. An open circuit voltage ($V_{\rm oc}$) of 0.37 V, a short circuit current density ($J_{\rm sc}$) of 21.2 mA/cm$^{2}$, and a power conversion efficiency (PCE) of 3.79% were obtained on an optimized device. A maximum external quantum efficiency of 73% was achieved at 600 nm. The $J_{\rm sc}$, $V_{\rm oc}$, and PCE were dramatically enhanced after introducing an electron transport layer of Alq$_{3}$. The results suggest that the interface state density at Sb$_{2}$Se$_{3}$/Al interface is decreased by inserting an Alq$_{3}$ layer, and the charge recombination loss in the device is suppressed. This work provides a new electron transport material for Sb$_{2}$Se$_{3}$ thin film solar cells.
Received: 14 July 2020      Published: 29 September 2020
PACS:  84.60.Jt (Photoelectric conversion)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Supported by the High Level Talents Project of Hainan Basic and Applied Research Program (Natural Science) (Grant No. 2019RC118), and the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in DICP (Grant No. SKLMRD-K202005).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/108401       OR      https://cpl.iphy.ac.cn/Y2020/V37/I10/108401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Jian Shi
Ze-Ming Kan
Chuan-Hui Cheng
Wen-Hui Li
Hang-Qi Song
Meng Li
Dong-Qi Yu
Xiu-Yun Du
Wei-Feng Liu
Sheng-Ye Jin
and Shu-Lin Cong
[1] Green M A, Hishikawa Y, Dunlop E D et al. 2018 Prog. Photovoltaics 26 427
[2] Jackson P, Wuerz R, Hariskos D et al. 2016 Phys. Status Solidi RRL 10 583
[3] Liu X, Chen J, Luo Met et al. 2014 ACS Appl. Mater. & Interfaces 6 10687
[4] Chen C, Li W, Zhou Y et al. 2015 Appl. Phys. Lett. 107 043905
[5] Zhou Y, Leng M, Xia Z et al. 2014 Adv. Energy Mater. 4 1301846
[6] Voutsas G P, Papazoglou A G, Rentzeperis P J and Siapkas D 1985 Z. Kristallogr. 171 261
[7] Luo M, Leng M, Liu X et al. 2014 Appl. Phys. Lett. 104 173904
[8] Zhou Y, Wang L, Chen S et al. 2015 Nat. Photon. 9 409
[9] Wen X, Chen C, Lu S et al. 2018 Nat. Commun. 9 2179
[10] Kondrotas R, Zhang J, Wang C and Tang J 2019 Sol. Energy Mater. Sol. Cells 199 16
[11] Liang G X, Zhang X H, Ma H L et al. 2017 Sol. Energy Mater. Sol. Cells 160 257
[12] Liang G X, Zheng Z H, Fan P et al. 2018 Sol. Energy Mater. Sol. Cells 174 263
[13] Hutter O S, Phillips L J, Durose K and Major J D 2018 Sol. Energy Mater. Sol. Cells 188 177
[14] Li D B, Yin X, Grice C R et al. 2018 Nano Energy 49 346
[15] Ngo T T, Chavhan S, Kosta I et al. 2014 ACS Appl. Mater. & Interfaces 6 2836
[16] Choi Y C and Il S 2015 Adv. Funct. Mater. 25 2892
[17] Choi Y C, Lee D U, Noh J H, Kim E K and Il S 2014 Adv. Funct. Mater. 24 3587
[18] Choi Y C, Lee Y H, Im S H et al. 2014 Adv. Funct. Mater. 4 1301680
[19] Wang W, Wang X, Chen G et al. 2018 Sol. RRL 2 1800208
[20] Shi X, Zhang X, Tian Y, Shen C, Wang C and Gao H J 2012 Appl. Surf. Sci. 258 2169
[21] Tang R, Wang X, Lian W et al. 2020 Nat. Energy 5 587
[22] Messina S, Nair M T S and Nair P K 2009 J. Electrochem. Soc. 156 H327
[23] Leng M, Luo M, Chen C, Qin S et al. 2014 Appl. Phys. Lett. 105 083905
[24] Li Z, Liang X, Li G, Liu H et al. 2019 Nat. Commun. 10 125
[25] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[26] Zhang L, Li Y, Li C et al. 2017 ACS Nano 11 12753
[27] Polman A, Knight M, Garnett E C, Ehrler B and Sinke W C 2016 Science 352 aad4424
[28] Li G, Li Z, Liang X et al. 2019 ACS Appl. Mater. & Interfaces 11 828
[29] Wu C, Jiang C, Wang X et al. 2019 ACS Appl. Mater. & Interfaces 11 3207
[30] Wang L, Li D B, Li K et al. 2017 Nat. Energy 2 17046
[31] Chen C, Zhao Y, Lu S et al. 2017 Adv. Energy Mater. 7 1700866
[32] Lu S, Zhao Y, Chen C, Zhou Y et al. 2018 Adv. Electron. Mater. 4 1700329
[33] Mihailetchi V D, Wildeman J and Blom P W M 2005 Phys. Rev. Lett. 94 126602
[34] Koster L J A, Mihailetchi V D, Xie H and Blom P W M 2005 Appl. Phys. Lett. 87 203502
[35] Chu T Y and Song O K 2007 Appl. Phys. Lett. 90 203512
[36] Malliaras G G, Shen Y and Dunlap D H 2001 Appl. Phys. Lett. 79 2582
Related articles from Frontiers Journals
[1] Zihan Qu, Fei Ma, Yang Zhao, Xinbo Chu, Shiqi Yu, and Jingbi You. Updated Progresses in Perovskite Solar Cells[J]. Chin. Phys. Lett., 2021, 38(10): 108401
[2] Gen Yue, Zhen Deng, Sen Wang, Ran Xu, Xinxin Li, Ziguang Ma, Chunhua Du, Lu Wang, Yang Jiang, Haiqiang Jia, Wenxin Wang, Hong Chen. Absorption Enhancement of Silicon Solar Cell in a Positive-Intrinsic-Negative Junction[J]. Chin. Phys. Lett., 2019, 36(5): 108401
[3] Wan-Ying Zhao, Zhi-Liang Ku, Li-Ping Lv, Xian Lin, Yong Peng, Zuan-Ming Jin, Guo-Hong Ma, Jian-Quan Yao. Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites[J]. Chin. Phys. Lett., 2019, 36(2): 108401
[4] Rui Wu, Jun-Ling Wang, Gang Yan, Rong Wang. Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(4): 108401
[5] Hui-Jie Yan, Zhi-Liang Ku, Xue-Feng Hu, Wan-Ying Zhao, Min-Jian Zhong, Qi-Biao Zhu, Xian Lin, Zuan-Ming Jin, Guo-Hong Ma. Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH$_{3}$NH$_{3}$PbI$_{3}$ Perovskites[J]. Chin. Phys. Lett., 2018, 35(2): 108401
[6] Jun-Ling Wang, Tian-Cheng Yi, Yong Zheng, Rui Wu, Rong Wang. Temperature-Dependent Photoluminescence Analysis of 1.0MeV Electron Irradiation-Induced Nonradiative Recombination Centers in n$^{+}$–p GaAs Middle Cell of GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(7): 108401
[7] Du-Xiang Wang, Ming-Hui Song, Jing-Feng Bi, Wen-Jun Chen, Sen-Lin Li, Guan-Zhou Liu, Ming-Yang Li, Chao-Yu Wu. Enhanced Efficiency of Metamorphic Triple Junction Solar Cells for Space Applications[J]. Chin. Phys. Lett., 2017, 34(6): 108401
[8] Yong Zheng, Tian-Cheng Yi, Jun-Ling Wang, Peng-Fei Xiao, Rong Wang. Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements[J]. Chin. Phys. Lett., 2017, 34(2): 108401
[9] Wen-Gui Wang, Li Zhu, Yu-Yan Weng, Wen Dong. TiO$_{2}$-Loaded WO$_{3}$ Composite Films for Enhancement of Photocurrent Density[J]. Chin. Phys. Lett., 2017, 34(2): 108401
[10] Jun-Na Zhang, Lei Wang, Zhun Dai, Xun Tang, You-Bo Liu, De-Ren Yang. The 18.3% Silicon Solar Cells with Nano-Structured Surface and Rear Emitter[J]. Chin. Phys. Lett., 2017, 34(2): 108401
[11] Yong Zheng, Tian-Cheng Yi, Peng-Fei Xiao, Juan Tang, Rong Wang. Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle Cells for Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2016, 33(05): 108401
[12] Talib Hussain, Hui-Qi Ye, Dong Xiao. Excess Carrier Lifetime Improvement in c-Si Solar Cells by YAG:Ce$^{3+}$-Yb$^{3+}$[J]. Chin. Phys. Lett., 2016, 33(05): 108401
[13] SUN Ding, GE Yang, XU Sheng-Zhi, ZHANG Li, LI Bao-Zhang, WANG Guang-Cai, WEI Chang-Chun, ZHAO Ying, ZHANG Xiao-Dan. Improvement of the Open Circuit Voltage of CZTSe Thin-Film Solar Cells by Surface Sulfurization Using SnS[J]. Chin. Phys. Lett., 2015, 32(12): 108401
[14] LI Li, YU Dong, WU Shi-Liang, WANG Wei, LIU Wen-Chao, WU Xiao-Shan, ZHANG Feng-Ming. Conversion Efficiency Enhancement of Multi-crystalline Si Solar Cells by Using a Micro-structured Junction[J]. Chin. Phys. Lett., 2015, 32(11): 108401
[15] WANG Fei-Long, DAI Bin, LIU Xue-Feng, SUN Yi-Ning, SUN Zhi-Bin, YU Qiang, ZHAI Guang-Jie. Containerless Heating Process of a Deeply Undercooled Metal Droplet by Electrostatic Levitation[J]. Chin. Phys. Lett., 2015, 32(11): 108401
Viewed
Full text


Abstract