Chin. Phys. Lett.  2019, Vol. 36 Issue (9): 098201    DOI: 10.1088/0256-307X/36/9/098201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Lithium Storage Property of Graphite/AlCuFe Quasicrystal Composites
Haijuan Wang, Xiao Lan, Yao Huang, Xunyong Jiang**
Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials, and School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300191
Cite this article:   
Haijuan Wang, Xiao Lan, Yao Huang et al  2019 Chin. Phys. Lett. 36 098201
Download: PDF(2751KB)   PDF(mobile)(2765KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quasicrystals have long-range quasi-periodic translational ordering and non-crystallographic rotational symmetry. Al–Cu–Fe quasicrystals have great potential for lithium storage because of their high Al content and a large number of defects in the structure. In our previous study (J. Alloys Compd. 805 (2019) 942) we showed that Al–Cu–Fe quasicrystals have good initial capacity whereas its cycle stability is poor. In the present study, graphite/AlCuFe is prepared by the mechanical alloying method. The results show that graphite/AlCuFe quasicrystal composites are successfully synthesized by planetary ball milling at 550 rpm for 80 h. The quasicrystal particle size decreases and the amorphous graphite forms onion-like carbon (OLC) when the two phases mix evenly. OLC forms on the surface of the Al–Cu–Fe quasicrystalline powder. Charge and discharge tests show that graphite/AlCuFe quasicrystal composites have high-stability capacity of 480 mAh/g after 20 cycles, which is larger than the sum of capacities of graphite and Al–Cu–Fe quasicrystals.
Received: 18 July 2019      Published: 05 August 2019
PACS:  82.47.Aa (Lithium-ion batteries)  
  71.23.Ft (Quasicrystals)  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  82.45.Fk (Electrodes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/9/098201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I9/098201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haijuan Wang
Xiao Lan
Yao Huang
Xunyong Jiang
[1]Key B, Morcrette M, Tarascon J M et al 2011 J. Am. Chem. Soc. 133 503
[2]Hui W and Yi C 2012 Nano Today 7 414
[3]Zhang W 2011 J. Power Sources 196 13
[4]Liu X H, Zhong L, Huang S et al 2012 ACS Nano 6 1522
[5]Lei X, Wang C, Yi Z et al 2007 J. Alloys Compd. 429 311
[6]Honda H, Sakaguchi H, Fukuda Y et al 2003 Mater. Res. Bull. 38 647
[7]Rouxel D and Pigeat P 2006 Prog. Surf. Sci. 81 488
[8]Jiang X Y, Liu Q S and Zhang L 2011 Rare Met. 30 (Suppl. 1) 63
[9]Luo X L, Grant D M and Walker G S 2015 J. Alloys Compd. 645 S23
[10]Lan X, Wang H, Sun Z et al 2019 J. Alloys Compd. 805 942
[11]Patiño-Carachure C, Flores-Chan J E, Gil A F et al 2017 J. Alloys Compd. 694 46
[12]Chan C K, Peng H, Liu G et al 2008 Nat. Nanotechnol. 3 31
[13]Fuchsbichler B, Stangl C, Kren H et al 2011 J. Power Sources 196 2889
Related articles from Frontiers Journals
[1] Qingyu Dong, Ruowei Yi, Jizhen Qi, Yanbin Shen, and Liwei Chen. Probing the Air Storage Failure Mechanism of Ni-Rich Layered Cathode Materials[J]. Chin. Phys. Lett., 2022, 39(3): 098201
[2] Di-Xing Ni, Yao-Dong Liu, Zhi Deng, Dian-Cheng Chen, Xin-Xin Zhang, Tao Wang, Shuai Li, and Yu-Sheng Zhao. Wet Mechanical Milling Induced Phase Transition to Cubic Anti-Perovskite Li$_{2}$OHCl[J]. Chin. Phys. Lett., 2022, 39(2): 098201
[3] Le-Qing Zhang, Qing-Tao Xia, Zhao-Hui Li, Yuan-Yuan Han, Xi-Xiang Xu, Xin-Long Zhao, Xia Wang, Yuan-Yuan Pan, Hong-Sen Li, and Qiang Li. Electrochemical Role of Transition Metals in Sn–Fe Alloy Revealed by Operando Magnetometry[J]. Chin. Phys. Lett., 2022, 39(2): 098201
[4] Zhekai Zhang, Jiyu Tian, Junfei Chen, Yugui He, Chaoyang Liu, Xinmiao Liang, and Jiwen Feng. Li Plating on Carbon Electrode Surface Probed by Low-Field Dynamic Nuclear Polarization $^{7}$Li NMR[J]. Chin. Phys. Lett., 2021, 38(12): 098201
[5] Panpan Li , Zhijie Feng , Tao Cheng , Yingchun Lyu, and Bingkun Guo. Effect of Fluorine Substitution on the Electrochemical Property and Structural Stability of a Lithium-Excess Cation Disordered Rock-Salt Cathode[J]. Chin. Phys. Lett., 2021, 38(8): 098201
[6] Jiachao Yang, Jian Zou, Chun Luo, Qiwen Ran, Xin Wang, Pengyu Chen, Chuan Hu, Xiaobin Niu, Haining Ji, and Liping Wang. FeSO$_{4}$ as a Novel Li-Ion Battery Cathode[J]. Chin. Phys. Lett., 2021, 38(6): 098201
[7] Changdong Qin, Le Wang, Pengfei Yan, Yingge Du, and Manling Sui. LiCoO$_{2}$ Epitaxial Film Enabling Precise Analysis of Interfacial Degradations[J]. Chin. Phys. Lett., 2021, 38(6): 098201
[8] Li-Wei Jiang, Ya-Xiang Lu, Yue-Sheng Wang, Li-Lu Liu, Xing-Guo Qi, Cheng-Long Zhao, Li-Quan Chen, Yong-Sheng Hu. A High-Temperature $\beta$-Phase NaMnO$_{2}$ Stabilized by Cu Doping and Its Na Storage Properties[J]. Chin. Phys. Lett., 2018, 35(4): 098201
[9] Rong-Xue Qiao, Ming-Jian Zhang, Yi-Dong Liu, Wen-Ju Ren, Yuan Lin, Feng Pan. A Novel Real-Time State-of-Health and State-of-Charge Co-Estimation Method for LiFePO$_{4}$ Battery[J]. Chin. Phys. Lett., 2016, 33(07): 098201
[10] ZHOU Xiang, CHEN Ji, GU Lin, MIAO Ling. Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene[J]. Chin. Phys. Lett., 2015, 32(02): 098201
[11] LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi. Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy[J]. Chin. Phys. Lett., 2013, 30(8): 098201
[12] XIA Rong-Sen, CUI Zhong-Hui, LIU Bi-Qiu, GUO Xiang-Xin, ZHAO Jing-Tai. Evolutions of Crystal Structure, Stoichiometry and Electrochemical Behavior with Co Substitution in LiNi1-yCoyO2 Positive Electrodes[J]. Chin. Phys. Lett., 2010, 27(7): 098201
[13] LIN Zhi-Ping, ZHAO Yu-Jun, ZHAO Yan-Ming. Li- Site and Metal-Site Ion Doping in Phosphate-Olivine LiCoPO4 by First-Principles Calculation[J]. Chin. Phys. Lett., 2009, 26(3): 098201
[14] OUYANG Chu-Ying, WANG De-Yu, SHI Si-Qi, WANG Zhao-Xiang, LI Hong, HUANG Xue-Jie, CHEN Li-Quan. First Principles Study on NaxLi1-xFePO4 As Cathode Material for Rechargeable Lithium Batteries[J]. Chin. Phys. Lett., 2006, 23(1): 098201
[15] OUYANG Chu-Ying, SHI Si-Qi, WANG Zhao-Xiang, LI Hong, HUANG Xue-Jie, CHEN Li-Quan. Temperature-Dependent Dynamic Properties of LixMn2O4 in Monte Carlo Simulations[J]. Chin. Phys. Lett., 2005, 22(2): 098201
Viewed
Full text


Abstract