Chin. Phys. Lett.  2019, Vol. 36 Issue (8): 084301    DOI: 10.1088/0256-307X/36/8/084301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers
Hang Yang1, Xin Zhang1**, Jian-hua Guo2**, Fu-gen Wu3, Yuan-wei Yao1
1School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006
2School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
3Department of Experiment Education, Guangdong University of Technology, Guangzhou 510006
Cite this article:   
Hang Yang, Xin Zhang, Jian-hua Guo et al  2019 Chin. Phys. Lett. 36 084301
Download: PDF(1713KB)   PDF(mobile)(1708KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the influence of coating layer on acoustic wave propagation in a dispersed random medium consisting of coated fibers. In the strong-scattering regime, the characteristics of wave scattering resonances are found to evolve regularly with the properties of the coating layer. By theoretical calculation, frequency gaps are found in acoustic excitation spectra in a random medium. The scattering cross section results present the evolution of scattering resonances with the properties of the coating layer, which offers a good explanation for the change of the frequency gaps. The velocity of the propagation quasi-mode is also shown to depend on the filling fraction of the coating layer. We use the generalized coherent potential-approximation approach to solve acoustic wave dispersion relations in a complicated random medium consisting of coating-structure scatterers. It is shown that our model reveals subtle changes in the behavior of the acoustic wave propagating quasi-modes.
Received: 27 January 2019      Published: 22 July 2019
PACS:  43.20.+g (General linear acoustics)  
  43.40.+s (Structural acoustics and vibration)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11374066 and 11374068, the High-Level Personnel Training Project in Guangdong Province, and the Natural Science Foundation of Guangdong Province under Grant No S2012020010885.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/8/084301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I8/084301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hang Yang
Xin Zhang
Jian-hua Guo
Fu-gen Wu
Yuan-wei Yao
[1]Sheng P 1990 Scattering and Localization of Classical Waves in Random Media (Singapore: World Scientific)
Sheng P 1995 Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (San Diego: Academic Press)
[2]Economou E N and Sigalas M M 1993 Phys. Rev. B 48 13434
[3]Martínez-Sala R, Sancho J, Sánchez J V et al 1995 Nature 378 241
[4]Liu Z Y, Zhang X X, Mao Y W et al 2000 Science 289 1734
[5]Cowan M L, Page J H and Sheng P 2011 Phys. Rev. B 84 094305
[6]Leroy V, Strybulevych A, Page J H et al 2011 Phys. Rev. E 83 046605
[7]Cobus L A, Skipetrov S E, Aubry A et al 2016 Phys. Rev. Lett. 116 193901
[8]Zhang X, Dan H, Wu F G et al 2008 J. Phys. D 41 155110
[9]Zhang S, Park Y S, Li J et al 2009 Phys. Rev. Lett. 102 023901
[10]Liu F and Liu Z Y 2015 Phys. Rev. Lett. 115 175502
[11]Chen H and Chan C T 2007 Appl. Phys. Lett. 91 183518
[12]Mei J, Ma G C, Yang M et al 2012 Nat. Commun. 3 756
[13]Ren S W, Belle L V, Claeys C et al 2019 Mech. Syst. Signal Process. 117 138
[14]Zhao D G, Xiao M, Ling C W et al 2018 Phys. Rev. B 98 014110
[15]Achaoui Y, Laude V, Benchabane S et al 2013 J. Appl. Phys. 114 104503
[16]Ma G C, Yang M, Xiao S W et al 2014 Nat. Mater. 13 873
[17]Lai Y, Wu Y, Sheng P et al 2011 Nat. Mater. 10 620
[18]Wang P, Casadei F, Shan S C et al 2014 Phys. Rev. Lett. 113 014301
[19]Jing X, Sheng P and Zhou M 1992 Phys. Rev. A 46 6513
[20]Jing X, Sheng P and Zhou M 1991 Phys. Rev. Lett. 66 1240
[21]Page J H, Sheng P, Schriemer H P et al 1996 Science 271 634
[22]Zhang X, Liu Z Y, Wu F G et al 2006 Phys. Rev. E 73 066604
[23]Qiu C Y, Ma Z F, Lu J Y et al 2012 Phys. Lett. A 376 637
[24]Ding Y Q, Liu Z Y, Qiu C Y et al 2007 Phys. Rev. Lett. 99 093904
[25]Wu S and Mei J 2016 AIP Adv. 6 015204
[26]Gao H F, Zhang X, Wu F G et al 2016 Acta Phys. Sin. 65 044301 (in Chinese)
Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 084301
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 084301
[3] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 084301
[4] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 084301
[5] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 084301
[6] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 084301
[7] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 084301
[8] Cun Wang, Shan-De Li, Wei-Guang Zheng, Qi-Bai Huang. Acoustic Absorption Characteristics of New Underwater Omnidirectional Absorber[J]. Chin. Phys. Lett., 2019, 36(4): 084301
[9] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 084301
[10] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 084301
[11] Jie Hu, Bin Liang, Xiao-Jun Qiu. Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound[J]. Chin. Phys. Lett., 2018, 35(2): 084301
[12] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 084301
[13] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 084301
[14] Wen-Fa Zhu, Hai-Yan Zhang, Jian Xu, Xiao-Dong Chai. Three-Dimensional Scattering of an Incident Plane Shear Horizontal Guided Wave by a Partly through-Thickness Hole in a Plate[J]. Chin. Phys. Lett., 2016, 33(01): 084301
[15] ZHANG Hai-Yan, XU Jian, MA Shi-Wei. High-Frequency Guided Wave Scattering by a Partly Through-Thickness Hole Based on 3D Theory[J]. Chin. Phys. Lett., 2015, 32(08): 084301
Viewed
Full text


Abstract