Chin. Phys. Lett.  2019, Vol. 36 Issue (8): 080501    DOI: 10.1088/0256-307X/36/8/080501
GENERAL |
Critical One-Dimensional Absorption-Desorption with Long-Ranged Interaction
Xiaowei Liu, Jingyuan Guo, Zhibing Li**
State Key Laboratory of Optoelectronic Materials and Technologies, and Guangdong Province Key Laboratory of Display Material and Technology, School of Physics, Sun Yat-Sen University, Guangzhou 510275
Cite this article:   
Xiaowei Liu, Jingyuan Guo, Zhibing Li 2019 Chin. Phys. Lett. 36 080501
Download: PDF(567KB)   PDF(mobile)(562KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An absorption-desorption model with long-ranged interaction is simulated by the dynamic Monte Carlo method. The dynamic process has an inert phase and an active phase that is controlled by the absorption rate. In the active phase, the number of vacancies increases with time exponentially, while in the inert phase the vacant sites will be occupied by adsorbates rapidly. At the critical absorption rate, both the number of vacancies and the time-depending active probability exhibit power-law behavior. We determine the critical absorption rate and the scaling exponents of the power-laws. The effect of the interaction range of desorption on the critical exponents is investigated. In the short-ranged interaction limit, the critical exponents of Schlögl's first model are recovered. The model may describe the stability of the inner Helmholtz layer, an essential component of the electrochemical double-layer capacitor at a nanowire.
Received: 23 April 2019      Published: 22 July 2019
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  05.70.Jk (Critical point phenomena)  
  64.60.Ht (Dynamic critical phenomena)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11274393, the National Basic Research Program of China under Grant No 2013CB933601, and the National Key Research and Development Program of China under Grant No 2016YFA0202001.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/8/080501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I8/080501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaowei Liu
Jingyuan Guo
Zhibing Li
[1]Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435
[2]Janssen H K et al 1989 Z. Phys. B 73 539
[3]Huse D A 1989 Phys. Rev. B 40 304
[4]Liu X W and Li Z B 1997 Commun. Theor. Phys. 27 511
[5]Li Z B et al 2002 Phys. Rev. E 65 057101
[6]Frackowiak E et al 2000 Appl. Phys. Lett. 77 2421
[7]An K H, Kim W S, Park Y S et al 2011 Adv. Funct. Mater. 11 387
[8]Jiang Q, Qu M Z, Zhou G M, Zhang B L and Yu Z L 2002 Mater. Lett. 57 988
[9]Zhang W M, Wu X L, Hu J S, Guo Y G and Wan L J 2008 Adv. Funct. Mater. 18 3941
[10]Reddy A L M, Shaijumon M M, Gowda S R and Ajayan P M 2009 Nano Lett. 9 1002
[11]Luo B, Wang B, Liang M, Ning J, Li X and Zhi L 2012 Adv. Mater. 24 1405
[12]Sparnaay M J 1972 The Electric Double Layer 1st edn (Sydney: Pergamon Press)
[13]Chu S and Majumdar A 2012 Nature 488 294
[14]Arm A and Tarascon J M 2008 Nature 451 652
[15]Yaron D, Moore E E, Shuai Z and Bredas J I 1998 J. Chem. Phys. 108 7451
[16]Wang W and Li Z B 2011 J. Appl. Phys. 109 114308
[17]Hoang D, Kasperski M, Puszkarski H and Diep H T 2013 J. Phys.: Condens. Matter 25 056006
[18]Horowitz C M, Bab M A, Mazzini M, Puzzo M L R and Saracco G P 2015 Phys. Rev. E 92 042127
[19]Li S, Dong Y F, Wang D D, Chen W, Huang L, Shi C W and Mai L Q 2014 Front. Phys. 9 303
[20]Kinzel W 1985 Z. Phys. B: Condens. Matter 58 229
[21]Janssen H K 1981 Z. Phys. B: Condens. Matter 42 151
[22]Schlögl F 1972 Z. Phys. 253 147
[23]Grassberger P and de la Torre A 1979 Ann. Phys. 122 373
[24]Moshe M 1978 Phys. Rep. 37 255
[25]Brower R C, Furman M A and Moshe M 1978 Phys. Lett. B 76 213
[26]Jovce G S 1966 Phys. Rev. 146 349
[27]Li Z B, Schülke L and Zheng B 1995 Phys. Rev. Lett. 74 3396
[28]Zheng B 1998 Int. J. Mod. Phys. B 12 1419
[29]Albano E V, Bab M A, Baglietto G, Borzi R A, Grigera T S, Loscar E S, Rodriguez D E, Puzzo M L R and Saracco G P 2011 Rep. Prog. Phys. 74 026501
[30]Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic Press)
[31]Abruña H D, Kiya Y and Henderson J C 2008 Phys. Today 21 43
Related articles from Frontiers Journals
[1] Mengmeng Xi, Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Coulomb Thermoelectric Drag in Four-Terminal Mesoscopic Quantum Transport[J]. Chin. Phys. Lett., 2021, 38(8): 080501
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 080501
[3] Yu-Hong Zhang, Hui Liu, Ying-Rong Han, Ya-Fei Chen, Su-Hua Zhang, Yong Zhan. Temperature Impacts on Transient Receptor Potential Channel Mediated Calcium Oscillations in Astrocytes[J]. Chin. Phys. Lett., 2017, 34(9): 080501
[4] Nan-Xian Chen, Bo-Hua Sun. Note on Divergence of the Chapman–Enskog Expansion for Solving Boltzmann Equation [J]. Chin. Phys. Lett., 2017, 34(2): 080501
[5] Pei-Yan Peng, Chang-Kui Duan. A Maxwell Demon Model Connecting Information and Thermodynamics[J]. Chin. Phys. Lett., 2016, 33(08): 080501
[6] SU Hao, SHI Zhi-Cheng, HE Ji-Zhou. Optimal Performance Analysis of a Three-Terminal Thermoelectric Refrigerator with Ideal Tunneling Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(10): 080501
[7] WEN Fa-Kai, YANG Zhan-Ying, CUI Shuai, CAO Jun-Peng, YANG Wen-Li. Spectrum of the Open Asymmetric Simple Exclusion Process with Arbitrary Boundary Parameters[J]. Chin. Phys. Lett., 2015, 32(5): 080501
[8] ZHOU Zong-Li, LI Min, YE Jian, LI Dong-Peng, LOU Ping, ZHANG Guo-Shun. The Heisenberg Model after an Interaction Quench[J]. Chin. Phys. Lett., 2014, 31(10): 080501
[9] LI Cong, ZHANG Yan-Chao, HE Ji-Zhou. A Nanosize Quantum-Dot Photoelectric Refrigerator[J]. Chin. Phys. Lett., 2013, 30(10): 080501
[10] Roumen Tsekov, Marga C. Lensen. Brownian Motion and the Temperament of Living Cells[J]. Chin. Phys. Lett., 2013, 30(7): 080501
[11] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 080501
[12] Clóves G. Rodrigues. Onset for the Electron Velocity Overshoot in Indium Nitride[J]. Chin. Phys. Lett., 2012, 29(12): 080501
[13] XIAO Yao, HUA Da-Yin. Promotion of Cooperation in a Spatial Public Goods Game with Long Range Learning and Mobility[J]. Chin. Phys. Lett., 2012, 29(11): 080501
[14] WU An-Cai . Percolation of Mobile Individuals on Weighted Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(11): 080501
[15] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 080501
Viewed
Full text


Abstract