GENERAL |
|
|
|
|
Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution |
Si-Yuan Liu1,2,3**, Feng-Lin Wu1,2,3, Yao-Zhong Zhang4, Heng Fan1,2 |
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2Institute of Modern Physics, Northwest University, Xi'an 710127 3Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127 4School of Mathematics and Physics, The University of Queensland, Brisbane 4072, Australia
|
|
Cite this article: |
Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang et al 2019 Chin. Phys. Lett. 36 080303 |
|
|
Abstract The definitions of strong superadditive deficit for relative entropy coherence and monogamy deficit of measurement-dependent global quantum discord are proposed. The equivalence between them is proved, which provides a useful criterion for the validity of the strong superadditive inequality of relative entropy coherence. In addition, the strong superadditive deficit of relative entropy coherence is proved to be greater than or equal to zero under the condition that bipartite measurement-dependent global quantum discord (GQD) does not increase under the discarding of subsystems. Using the Monte Carlo method, it is shown that both the strong superadditive inequality of relative entropy coherence and the monogamy inequality of measurement-dependent GQD are established under general circumstances. The bipartite measurement-dependent GQD does not increase under the discarding of subsystems. The multipartite situation is also discussed in detail.
|
|
Received: 24 April 2019
Published: 22 July 2019
|
|
PACS: |
03.67.-a
|
(Quantum information)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11775177, 11775178, 11647057 and 11705146, the Special Research Funds of Shaanxi Province Department of Education under Grant No 16JK1759, the Basic Research Plan of Natural Science in Shaanxi Province under Grant No 2018JQ1014, the Major Basic Research Program of Natural Science of Shaanxi Province under Grant No 2017ZDJC-32, the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province under Grant No 2017KCT-12, the Northwest University Scientific Research Funds under Grant No 15NW26, the Double First-Class University Construction Project of Northwest University, and the Australian Research Council through Discovery Projects under Grant No DP190101529. |
|
|
[1] | Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) | [2] | London F and London H 1935 Proc. R. Soc. A 149 71 | [3] | Cwiklinski P, Studzinski M, Horodecki M and Oppenheim J 2015 Phys. Rev. Lett. 115 210403 | [4] | Nielsen M A and Chuang L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) | [5] | Shi H L, Liu S Y, Wang X H, Yang W L, Yang Z Y and Fan H 2017 Phys. Rev. A 95 032307 | [6] | Hou J X, Liu S Y, Wang X H and Yang W L 2017 Phys. Rev. A 96 042324 | [7] | Su Y L, Liu S Y, Wang X H, Fan H and Yang W L 2018 Sci. Rep. 8 11081 | [8] | Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 | [9] | Bagan E, Bergou J A, Cottrell S S and Hillery M 2016 Phys. Rev. Lett. 116 160406 | [10] | Jha P K, Mrejen M, Kim J, Wu C, Wang Y, Rostovtsev Y V and Zhang X 2016 Phys. Rev. Lett. 116 165502 | [11] | Kammerlander P and Anders J 2016 Sci. Rep. 6 22174 | [12] | Zhang F G and Li Y M 2018 Chin. Phys. B 27 090301 | [13] | Yi T C, Ding Y R, Ren J, Wang Y M and You W L 2018 Acta Phys. Sin. 67 140303 (in Chinese) | [14] | Gao Q, Gao D Y and Xia Y J 2018 Chin. Phys. B 27 060304 | [15] | Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502 | [16] | Ma J J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407 | [17] | Zhang Y R, Shao L H, Li Y and Fan H 2016 Phys. Rev. A 93 012334 | [18] | Cheng S and Hall M J W 2015 Phys. Rev. A 92 042101 | [19] | Singh U, Zhang L and Pati A K 2016 Phys. Rev. A 93 032125 | [20] | Rana S, Parashar P and Lewenstein M 2016 Phys. Rev. A 93 012110 | [21] | Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 | [22] | Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 | [23] | Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655 | [24] | Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402 | [25] | Streltsov A, Chitambar E, Rana S, Bera M N, Winter A and Lewenstein M 2016 Phys. Rev. Lett. 116 240405 | [26] | Killoran N, Steinhoff F E S and Plenio M B 2016 Phys. Rev. Lett. 116 080402 | [27] | Chitambar E and Hsieh M H 2016 Phys. Rev. Lett. 117 020402 | [28] | Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403 | [29] | Ma T, Zhao M J, Fei S M and Long G L 2016 Phys. Rev. A 94 042312 | [30] | Xi Z J, Li Y M and Fan H 2015 Sci. Rep. 5 10922 | [31] | Ma T, Zhao M J, Zhang H J, Fei S M and Long G L 2017 Phys. Rev. A 95 042328 | [32] | Liu S Y, Zhang Y R, Zhao L M, Yang W L and Fan H 2014 Ann. Phys. 348 256 | [33] | Acín A, Andrianov A, Costa L, Jané E, Latorre J I and Tarrach R 2000 Phys. Rev. Lett. 85 1560 | [34] | Acín A, Bruß D, Lewenstein M and Sanpera A 2001 Phys. Rev. Lett. 87 040401 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|