CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Van der Waals Epitaxy of Anatase TiO$_{2}$ on mica and Its Application as Buffer Layer |
Han Xu1, Zhen-Lin Luo1**, Chang-Gan Zeng1, Chen Gao1,2** |
1National Synchrotron Radiation Laboratory & CAS Key Laboratory of Materials for Energy Conversion, Department of Physics, University of Science and Technology of China, Hefei 230026 2Beijing Advanced Sciences and Innovation Center of Chinese Academy of Sciences, Beijing 101407
|
|
Cite this article: |
Han Xu, Zhen-Lin Luo, Chang-Gan Zeng et al 2019 Chin. Phys. Lett. 36 078101 |
|
|
Abstract MICAtronics, based on the functional oxide/mica heterostructures, has recently attracted much attention due to its potential applications in transparent, flexible electronics and devices. However, the weak van der Waals interaction decreases the tolerable lattice mismatch and thus limits the species of function oxides that are able to be epitaxially grown on mica. We successfully fabricate relatively high-quality epitaxial anatase TiO$_{2}$ thin films on mica substrates. Structural analyses reveal that the carefully chosen growth temperature (650$^\circ\!$C) and suitable crystalline phase (anatase phase) of TiO$_{2}$ are the key issues for this van der Waals epitaxy. Moreover, as a buffer layer, the TiO$_{2}$ layer successfully suppresses the decomposition of BiFeO$_{3}$ and the difficulty of epitaxial growth of BiFeO$_{3}$ is decreased. Therefore, relatively high-quality anatase TiO$_{2}$ is proved to be an effective buffer layer for fabricating more functional oxides on mica.
|
|
Received: 05 March 2019
Published: 20 June 2019
|
|
PACS: |
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
61.05.cj
|
(X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0300102, the National Natural Science Foundation of China under Grant Nos 11675179, 11434009 and 11374010, and the Fundamental Research Funds for the Central Universities under Grant No WK2340000065. |
|
|
[1] | Bitla Y and Chu Y H 2017 FlatChem 3 26 | [2] | Loganathan N and Kalinichev A G 2017 J. Phys. Chem. C 121 7829 | [3] | Zhang X, He Y, Li R, Dong H and Hu W 2016 Adv. Mater. 28 3755 | [4] | Castellanos G A, Poot M, Amor-Amorós A, Gary A S, Herre S J, Nicolás A and Gabino R B 2012 Nano Res. 5 550 | [5] | Gao J, Guo W, Geng H, Hou X, Shuai Z and Jiang L 2012 Nano Res. 5 99 | [6] | Chu Y H 2017 npj Quantum Mater. 2 67 | [7] | Bitla Y, Chen C, Lee H C, Do T H, Ma C, Qui L V, Huang C, Wu W, Chang Li, Chiu H and Chu Y 2016 ACS Appl. Mater. Interfaces 8 32401 | [8] | Li M, Wang Y and Wei X 2017 Ceram. Int. 43 15442 | [9] | Zhou H, Xie J, Mai M, Wang J, Shen X, Wang S, Zhang L, Kisslinger K, Wang H, Zhang J, Li Y, Deng J, Ke S and Zeng X 2018 ACS Appl. Mater. Interfaces 10 16160 | [10] | Wu P C, Chen P F, Do T H, Hsieh Y, Ma C, Ha T, Wu K, Wang Y, Li H, Chen Y, Juang J, Yu P, Eng L, Chang C, Chiu P, Tjeng L and Chu Y 2016 ACS Appl. Mater. Interfaces 8 33794 | [11] | Gao G Q, Jin C, Zheng W C, Zheng D X and Bai H 2018 Europhys. Lett. 123 17002 | [12] | Liu H J, Wang C K, Su D, Amrillah T, Hsieh Y, Wu K, Chen Y, Juang J, Eng L, Jen S and Chu Y 2017 ACS Appl. Mater. Interfaces 9 7297 | [13] | Chen Y, Fan L, Fang Q, Xu W, Chen S, Zan G, Ren H, Song L and Zou C 2017 Nano Energy 31 144 | [14] | Su L, Lu X, Chen L, Wang Y, Yuan G and Liu J 2018 ACS Appl. Mater. Interfaces 10 21428 | [15] | Fukuma T, Ueda Y, Yoshioka S and Asakawa H 2010 Phys. Rev. Lett. 104 016101 | [16] | Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H, Heinz T F, Hong S S, Huang J, Lsmach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano 7 2898 | [17] | Liu J, Feng Y, Tang R, Zhao R, Guo J, Shi D and Yang H 2018 Adv. Electron. Mater. 4 1700522 | [18] | Gao W, You L, Wang Y, Yuan G, Chu Y, Liu Z and Liu J 2017 Adv. Electron. Mater. 3 1600542 | [19] | Wang D, Chen X, Yuan G, Jia Y, Wang Y, Mumtaz A, Wang Y and Liu J 2019 J. Materiomics 5 66 | [20] | Wang D, Yuan G, Hao G and Wang Y 2018 Nano Energy 43 351 | [21] | Ma C H, Lin J C, Liu H J, Do T, Zhu Y, Ha T, Zhan Q, Juang J, He Q, Arenholz E, Chiu P and Chu Y 2016 Appl. Phys. Lett. 108 253104 | [22] | Jiang J, Bitla Y, Huang C W, Do T, Liu H, Hsieh Y, Ma C, Jang C, Lai Y, Chiu P, Wy W, Chen Y, Zhou Y and Chu Y 2017 Sci. Adv. 3 e1700121 | [23] | Liu W, Liu M, Ma R, Zhang R, Zhang W, Yu D, Wang Q, Wang J and Wang H 2018 Adv. Funct. Mater. 28 1705928 | [24] | Yang H G, Liu G, Qiao S Z, Sun C, Jin Y G, Smith S C, Zou J, Cheng H M and Lu G Q 2009 J. Am. Chem. Soc. 131 4078 | [25] | Thomas A G, Flavell W R, Mallick A K, Kumarasinghe A R, Tsoutsou D, Khan N, Chatwin C, Rayner S, Smith G C, Stockbauer R L, Warren S, Johal T K, Patel S, Holl, D, Taleb A and Wiame F 2007 Phys. Rev. B 75 035105 | [26] | Porsche J, Ruf A, Geiger M and Scholz F 1998 J. Cryst. Growth 195 591 | [27] | Koch R, Hu D and Das A K 2005 Phys. Rev. Lett. 94 146101 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|