CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Ionic-Liquid-Gating Induced Protonation and Superconductivity in FeSe, FeSe$_{0.93}$S$_{0.07}$, ZrNCl, 1$T$-TaS$_2$ and Bi$_2$Se$_3$ |
Yi Cui1,2†, Ze Hu2†, Jin-Shan Zhang1**, Wen-Long Ma3, Ming-Wei Ma3, Zhen Ma4, Cong Wang2, Jia-Qiang Yan5, Jian-Ping Sun6, Jin-Guang Cheng6, Shuang Jia3,7**, Yuan Li3,7, Jin-Sheng Wen4,8, He-Chang Lei2, Pu Yu9,7, Wei Ji2, Wei-Qiang Yu2** |
1School of Mathematics and Physics, North China Electric Power University, Beijing 102206
2Department of Physics, and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University, Beijing 100872
3International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871
4National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093
5Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
6Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
7Collaborative Innovation Center of Quantum Matter, Beijing 100871
8Innovative Center for Advanced Microstructures, Nanjing University, Nanjing 210093
9State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084 |
|
Cite this article: |
Yi Cui, Ze Hu, Jin-Shan Zhang et al 2019 Chin. Phys. Lett. 36 077401 |
|
|
Abstract We report protonation in several compounds by an ionic-liquid-gating method, under optimized gating conditions. This leads to single superconducting phases for several compounds. Non-volatility of protons allows post-gating magnetization and transport measurements. The superconducting transition temperature $T_{\rm c}$ is enhanced to 43.5 K for FeSe$_{0.93}$S$_{0.07}$, and 41 K for FeSe after protonation. Superconducting transitions with $T_{\rm c} \sim 15$ K for ZrNCl, $\sim$7.2 K for 1$T$-TaS$_2$, and $\sim$3.8 K for Bi$_2$Se$_3$ are induced after protonation. Electric transport in protonated FeSe$_{0.93}$S$_{0.07}$ confirms high-temperature superconductivity. Our $^{1}$H nuclear magnetic resonance (NMR) measurements on protonated FeSe$_{1-x}$S$_{x}$ reveal enhanced spin-lattice relaxation rate $1/^{1}T_1$ with increasing $x$, which is consistent with the LDA calculations that H$^{+}$ is located in the interstitial sites close to the anions.
|
|
Received: 25 May 2019
Published: 29 May 2019
|
|
PACS: |
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
78.30.cd
|
(Solutions and ionic liquids)
|
|
74.25.nj
|
(Nuclear magnetic resonance)
|
|
|
Fund: Work at RUC was supported by the National Natural Science Foundation of China under Grant Nos 51872328, 11622437, 11574394, 11774423 and 11822412, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB30000000, the Ministry of Science and Technology of China under Grant No 2016YFA0300504, the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (RUC) (15XNLQ07, 18XNLG14, 19XNLG17). SJ was supported by the National Natural Science Foundation of China under Grant Nos 11774007 and U1832214. YC was supported by the Outstanding Innovative Talents Cultivation Funded Programs 2018 of Renmin University of China. JQY was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering. |
|
|
[1] | Ahn C H, Bhattacharya A, Ventra M D, Eckstein J N, Frisbie C D, Gershenson M E, Goldman A M, Inoue I H, Mannhart J, Millis A J, Morpurgo A F, Natelson D and Triscone J M 2006 Rev. Mod. Phys. 78 1185 | [2] | Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y and Kawasaki M 2008 Nat. Mater. 7 855 | [3] | Saito Y, Kasahara Y, Ye J, Iwasa Y and Nojima T 2015 Science 350 409 | [4] | Ye J T, Inoue S, Kobayashi K, Kasahara Y, Yuan H T, Shimotani H and Iwasa Y 2010 Nat. Mater. 9 125 | [5] | Bollinger A T, Dubuis G, Yoon J, Pavuna D, Misewich J and Bozǒvi? I 2011 Nature 472 458 | [6] | Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 338 1193 | [7] | Li L J, O'Farrell1 E C T, Loh K P, Eda G, ?zyilmaz B and Castroneto A H 2016 Nature 529 185 | [8] | Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353 | [9] | Miyakawa T, Shiogai J, Shimizu S, Matsumoto M, Ito Y, Harada T, Fujiwara K, Nojima T, Itoh Y, Aida T, Iwasa Y and Tsukazaki A 2018 Phys. Rev. Mater. 2 031801 | [10] | Lei B, Wang N Z, Shang C, Meng F B, Ma L K, Luo X G, Wu T, Sun Z, Wang Y, Jiang Z, Mao B H, Liu Z, Yu Y J, Zhang Y B and Chen X H 2017 Phys. Rev. B 95 020503 | [11] | Lu N, Zhang P, Zhang Q, Qiao R, He Q, Li H B , Wang Y, Guo J, Zhang D, Duan Z, Li Z, Wang M, Yang S, Yan M, Arenholz E, Zhou S, Yang W, Gu L, Nan C W , Wu J, Tokura Y and Yu P 2017 Nature 546 124 | [12] | Cui Y, Zhang G, Li H, Lin H, Zhu X, Wen H H , Wang G, Sun J, Ma M, Li Y, Gong D, Xie T, Gu Y, Li S, Luo H, Yu P and Yu W 2018 Sci. Bull. 63 11 | [13] | B?hmer A E, Hardy F, Eilers F, Ernst D, Adelmann P, Schweiss P, Wolf T and Meingast C 2013 Phys. Rev. B 87 180505 | [14] | Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y and Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139 | [15] | Chen X, Koiwasaki T and Yamanaka S 2002 J. Phys.: Condens. Matter 14 11209 | [16] | Kuwabara M, Tomita M, Hashimoto H and Endoh H 1986 Phys. Status Solidi A 96 39 | [17] | Sultana R, Awana G, Pal B, Maheshwari P K, Mishra M, Gupta G, Gupta A, Thirupathaiah S and Awana V P S 2017 J. Supercond. Novel Magn. 30 2031 | [18] | Borg C K H, Zhou X, Eckberg C, Campbell D J, Saha S R, Paglione J and Rodriguez E E 2016 Phys. Rev. B 93 094522 | [19] | Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater. 8 630 | [20] | Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q , Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun. 7 12146 | [21] | Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M and Chen X 2010 Phys. Rev. B 82 180520 | [22] | Hatakeda T, Noji T, Kawamata T, Kato M and Koike Y 2013 J. Phys. Soc. Jpn. 82 123705 | [23] | Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G and Zhao Z 2015 J. Am. Chem. Soc. 137 66 | [24] | Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325 | [25] | Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z and Chen X H 2016 Phys. Rev. Lett. 116 077002 | [26] | Wang Q Y , Li Z, Zhang W H , Zhang Z C , Zhang J S , Li W, Ding H, Ou Y B , Deng P, Chang K, Wen J, Song C L , He K, Jia J F , Ji S H , Wang Y Y , Wang L L , Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402 | [27] | Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T and Takano Y 2009 J. Phys. Soc. Jpn. 78 074712 | [28] | Taguchi Y, Kitora A and Iwasa Y 2006 Phys. Rev. Lett. 97 107001 | [29] | Zhang S, Gao M R , Fu H Y , Wang X M , Ren Z A and Chen G F 2018 Chin. Phys. Lett. 35 097401 | [30] | Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117 | [31] | Thomson R E, Burk B, Zettl A and Clarke J 1994 Phys. Rev. B 49 16899 | [32] | Liu Y, Ang R, Lu W J, Song W H, Li L J and Sun Y P 2013 Appl. Phys. Lett. 102 192602 | [33] | Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438 | [34] | Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398 | [35] | Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001 | [36] | Liu Z, Yao X, Shao J, Zuo M, Pi L, Tan S, Zhang C and Zhang Y 2015 J. Am. Chem. Soc. 137 10512 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|