CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Pressure-Induced Ionic-Electronic Transition in BiVO$_{4}$ |
Shu-Peng Lyu, Jia Wang, Guo-Zhao Zhang, Yu-Fei Wang, Min Wang, Cai-Long Liu, Chun-Xiao Gao, Yong-Hao Han** |
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012
|
|
Cite this article: |
Shu-Peng Lyu, Jia Wang, Guo-Zhao Zhang et al 2019 Chin. Phys. Lett. 36 077202 |
|
|
Abstract Electrical transport properties of bismuth vanadate (BiVO$_{4}$) are studied under high pressures with electrochemical impedance spectroscopy. A pressure-induced ionic-electronic transition is found in BiVO$_{4}$. Below 3.0 GPa, BiVO$_{4}$ has ionic conduction behavior. The ionic resistance decreases under high pressures due to the increasing migration rate of O$^{2-}$ ions. Above 3.0 GPa the channels for ion migration are closed. Transport mechanism changes from the ionic to the electronic behavior. First-principles calculations show that bandgap width narrows under high pressures, causing the continuous decrease of electrical resistance of BiVO$_{4}$.
|
|
Received: 27 February 2019
Published: 20 June 2019
|
|
PACS: |
72.90.+y
|
(Other topics in electronic transport in condensed matter)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
66.10.Ed
|
(Ionic conduction)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11774126, 11774174 and 11404133. |
|
|
[1] | Walsh A, Yan Y, Huda M N, Al-Jassim M M and Wei S H 2009 Chem. Mater. 21 547 | [2] | Yin W J, Wei S H, Al-Jassim M M, Turner J and Yan Y 2011 Phys. Rev. B 83 155102 | [3] | Berglund S P, Flaherty D W, Hahn N T, Bard A J and Mullins C B 2011 J. Phys. Chem. C 115 3794 | [4] | Kudo A, Ueda K, Kato H and Mikami I 1998 Catal. Lett. 53 229 | [5] | Iwase A and Kudo A 2010 J. Mater. Chem. 20 7536 | [6] | Shi X, Choi I Y, Zhang K, Kwon J, Dong Y K, Lee J K, Sang H O, Kim J K and Park J H 2014 Nat. Commun. 5 4775 | [7] | Abdi F F and van de Krol R 2012 J. Phys. Chem. C 116 9398 | [8] | Abdi F F, Firet N and van de Krol R 2013 ChemCatChem 5 490 | [9] | Liang Y, Tsubota T, Mooij L P A and van de Krol R 2011 J. Phys. Chem. C 115 17594 | [10] | Abdi F F, Savenije T J, May M M, Dam B and van de Krol R 2013 J. Phys. Chem. Lett. 4 2752 | [11] | Feng C, Jiao Z, Li S, Yan Z and Bi Y 2015 Nanoscale 7 20374 | [12] | Park H S, Kweon K E, Ye H, Paek E, Hwang G S and Bard A J 2011 J. Phys. Chem. C 115 17870 | [13] | Hanfl, M, Syassen K, Christensen N E and Novikov D L 2000 Nature 408 174 | [14] | Pan X C, Chen X, Liu H, Feng Y, Wei Z, Zhou Y, Chi Z, Li P, Fei Y and Song F 2015 Nat. Commun. 6 7805 | [15] | Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C, Singh A K, Akinwande D and Lin J F 2014 Nat. Commun. 5 3731 | [16] | Zhao J et al 2010 Chin. Phys. Lett. 27 066101 | [17] | Duan D F, Ma Y B, Shao Z J, Xie H, Huang X L, Liu B B and Cui T 2017 Acta Phys. Sin. 66 036102 (in Chinese) | [18] | Qin T, Wang Q, Wang L, Yan H, Liu C, Han Y, Ma Y and Gao C 2016 Phys. Chem. Chem. Phys. 18 33109 | [19] | Hakeem M A, Jackson D E, Hamlin J J, Errandonea D, Proctor J E and Bettinelli M 2018 Inorg. Chem. 57 7550 | [20] | Li W, Feng K, Wang Q, Yan J, Liu C, Liu X, Li Y, Han Y, Ma Y and Gao C 2015 Appl. Phys. Lett. 107 201603 | [21] | Li M, Gao C, Ma Y, Li Y, Li X, Li H, Liu J, Hao A, He C, Huang X, Zhang D and Yu C 2006 Rev. Sci. Instrum. 77 123902 | [22] | Yun Y, Huang Y, Fei M, Zhang Z, Wei X and Zhu G 2016 J. Mater. Sci. 51 6662 | [23] | Wang J, Zhang G, Liu H, Wang Q, Shen W, Yan Y, Liu C, Han Y and Gao C 2017 Appl. Phys. Lett. 111 031907 | [24] | Masetti G, Severi M and Solmi S 1983 IEEE Trans. Electron Devices 30 764 | [25] | Coehoorn R, Pasveer W F, Bobbert P A and Michels M A J 2005 Phys. Rev. B 72 155206 | [26] | Arkhipov V I, Heremans P, Emelianova E V, Adriaenssens G J and Bässler H 2003 Appl. Phys. Lett. 82 3245 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|