Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 076801    DOI: 10.1088/0256-307X/36/7/076801
Experimental Realization of an Intrinsic Magnetic Topological Insulator
Yan Gong1, Jingwen Guo1, Jiaheng Li1, Kejing Zhu1, Menghan Liao1, Xiaozhi Liu2, Qinghua Zhang2, Lin Gu2, Lin Tang1, Xiao Feng1, Ding Zhang1,3,4, Wei Li1,4, Canli Song1,4, Lili Wang1,4, Pu Yu1,4, Xi Chen1,4, Yayu Wang1,3,4, Hong Yao4,5, Wenhui Duan1,3,4, Yong Xu1,4,6**, Shou-Cheng Zhang7, Xucun Ma1,4, Qi-Kun Xue1,3,4**, Ke He1,3,4**
1State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3Beijing Academy of Quantum Information Sciences, Beijing 100193
4Collaborative Innovation Center of Quantum Matter, Beijing 100084
5Institute for Advanced Study, Tsinghua University, Beijing 100084
6RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
7Stanford Center for Topological Quantum Physics, Department of Physics, Stanford University, Stanford, California 94305-4045, USA
Cite this article:   
Yan Gong, Jingwen Guo, Jiaheng Li et al  2019 Chin. Phys. Lett. 36 076801
Download: PDF(7918KB)   PDF(mobile)(7536KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An intrinsic magnetic topological insulator (TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel topological quantum effects but remained elusive experimentally for a long time. Here we report the experimental realization of thin films of an intrinsic magnetic TI, MnBi$_{2}$Te$_{4}$, by alternate growth of a Bi$_{2}$Te$_{3}$ quintuple layer and a MnTe bilayer with molecular beam epitaxy. The material shows the archetypical Dirac surface states in angle-resolved photoemission spectroscopy and is demonstrated to be an antiferromagnetic topological insulator with ferromagnetic surfaces by magnetic and transport measurements as well as first-principles calculations. The unique magnetic and topological electronic structures and their interplays enable the material to embody rich quantum phases such as quantum anomalous Hall insulators and axion insulators at higher temperature and in a well-controlled way.
Received: 27 May 2019      Published: 04 June 2019
PACS: (Semiconductors)  
  73.23.Ad (Ballistic transport)  
  71.20.Nr (Semiconductor compounds)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Supported by the Ministry of Science and Technology of China, the National Science Foundation of China, and the Beijing Advanced Innovation Center for Future Chip (ICFC).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Yan Gong
Jingwen Guo
Jiaheng Li
Kejing Zhu
Menghan Liao
Xiaozhi Liu
Qinghua Zhang
Lin Gu
Lin Tang
Xiao Feng
Ding Zhang
Wei Li
Canli Song
Lili Wang
Pu Yu
Xi Chen
Yayu Wang
Hong Yao
Wenhui Duan
Yong Xu
Shou-Cheng Zhang
Xucun Ma
Qi-Kun Xue
Ke He
[1]Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2]Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3]Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[4]Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[5]Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802
[6]Yu R et al 2010 Science 329 61
[7]Chang C Z et al 2013 Science 340 167
[8]Qi X L, Hughes T L and Zhang S C 2010 Phys. Rev. B 82 184516
[9]He Q L et al 2017 Science 357 294
[10]Lee I et al 2015 Proc. Natl. Acad. Sci. USA 112 1316
[11]Lachman E O et al 2015 Sci. Adv. 1 e1500740
[12]Grauer S et al 2015 Phys. Rev. B 92 201304
[13]Feng X et al 2016 Adv. Mater. 28 6386
[14]Liu Y et al 2018 Nature 555 638
[15]Tang P, Zhou Q, Xu G and Zhang S C 2016 Nat. Phys. 12 1100
[16]Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[17]Neupane M et al 2012 Phys. Rev. B 85 235406
[18]Lee D S et al 2013 CrystEngComm 15 5532
[19]Hagmann J A et al 2017 New J. Phys. 19 085002
[20]Hirahara T et al 2017 Nano Lett. 17 3493
[21]Otrokov M et al 2017 2D Mater. 4 025082
[22]Li Y Y et al 2010 Adv. Mater. 22 4002
[23]Zhang H et al 2009 Nat. Phys. 5 438
[24]Chen Y L et al 2009 Science 325 178
[25]Fu L 2009 Phys. Rev. Lett. 103 266801
[26]Chen J et al 2010 Phys. Rev. Lett. 105 176602
[27]Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[28]Li J et al 2019 Sci. Adv. (to be published) ( 2018 arXiv:1808.08608 [cond-mat.mtrl-sci])
[29]Zhang D et al 2019 Phys. Rev. Lett. 122 206401
[30]Huang B et al 2017 Nature 546 270
Related articles from Frontiers Journals
[1] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi *[J]. Chin. Phys. Lett., 0, (): 076801
[2] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi[J]. Chin. Phys. Lett., 2020, 37(6): 076801
[3] Gaoyuan Jiang, Yang Feng, Weixiong Wu, Shaorui Li, Yunhe Bai, Yaoxin Li, Qinghua Zhang, Lin Gu, Xiao Feng, Ding Zhang, Canli Song, Lili Wang, Wei Li, Xu-Cun Ma, Qi-Kun Xue, Yayu Wang, Ke He. Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2018, 35(7): 076801
[4] Si-Min Huang, Bo Qian, Ruo-Xi Shen, Yong-Lin Xie. Nonlinear Doping, Chemical Passivation and Photoluminescence Mechanism in Water-Soluble Silicon Quantum Dots by Mechanochemical Synthesis[J]. Chin. Phys. Lett., 2018, 35(3): 076801
[5] Xin-Yi Yang, Guan-Yong Wang, Chen-Xiao Zhao, Zhen Zhu, Lu Dong, Ai-Min Li, Yang-Yang Lv, Shu-Hua Yao, Yan-Bin Chen, Dan-Dan Guan, Yao-Yi Li, Hao Zheng, Dong Qian, Canhua Liu, Yu-Lin Chen, Jin-Feng Jia. Surface Structure and Reconstructions of HgTe (111) Surfaces[J]. Chin. Phys. Lett., 2018, 35(2): 076801
[6] N. Panahi, M. T. Hosseinnejad, M. Shirazi, M. Ghoranneviss. Optimization of Gas Sensing Performance of Nanocrystalline SnO$_{2}$ Thin Films Synthesized by Magnetron Sputtering[J]. Chin. Phys. Lett., 2016, 33(06): 076801
[7] HE Xiao-Min, CHEN Zhi-Ming, LI Lian-Bi. Relaxation of 6H-SiC (0001) Surface and Si Adsorption on 6H-SiC (0001): an ab initio Study[J]. Chin. Phys. Lett., 2015, 32(03): 076801
[8] LIU Xiao-Juan, CAO Wen-Qiang, HUANG Zi-Han, YUAN Jie, FANG Xiao-Yong, CAO Mao-Sheng. Electronic Structures and Adsorption of Li-Doped Graphenes for CO[J]. Chin. Phys. Lett., 2015, 32(03): 076801
[9] LUO Jie-Xin, CHEN Jing, CHAI Zhan, L Kai, HE Wei-Wei, YANG Yan, WANG Xi. The Impact of Shallow-Trench-Isolation Mechanical Stress on the Hysteresis Effect of Partially Depleted Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Field Effects[J]. Chin. Phys. Lett., 2014, 31(12): 076801
[10] FENG Xiang-Xu, LIU Nai-Xin, ZHANG Ning, WEI Tong-Bo, WANG Jun-Xi, LI Jin-Min. Effect of Stress in GaN/AlInGaN Grown on GaN Templates with Different Stress States[J]. Chin. Phys. Lett., 2014, 31(05): 076801
[11] SUN Bing, CHANG Hu-Dong, LU Li, LIU Hong-Gang, WU De-Xin. High-Quality Single Crystalline Ge(111) Growth on Si(111) Substrates by Solid Phase Epitaxy[J]. Chin. Phys. Lett., 2012, 29(3): 076801
[12] MENG Xiu-Qing**, FANG Yun-Zhang, WU Feng-Min. Amphiphilic Bio-molecules/ZnO Interface: Enhancement of Bio-affinity and Dispersibility[J]. Chin. Phys. Lett., 2012, 29(1): 076801
[13] LIU Yan, AO Zhi-Min**, WANG Tao**, WANG Wen-Bo, SHENG Kuang, YU Bin, . Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field[J]. Chin. Phys. Lett., 2011, 28(8): 076801
[14] ZHONG Ze, SUN Li-Jie, CHEN Xiao-Qing, WU Xiao-Peng, FU Zhu-Xi. Effect of Zn Interstitials on Enhancing Ultraviolet Emission of ZnO Films Deposited by MOCVD[J]. Chin. Phys. Lett., 2010, 27(9): 076801
[15] FU Ying-Shuang, JI Shuai-Hua, ZHANG Tong, CHEN Xi, JIA Jin-Feng, XUE Qi-Kun, MA Xu-Cun . Modifying Quantum Well States of Pb Thin Films via Interface Engineering[J]. Chin. Phys. Lett., 2010, 27(6): 076801
Full text