Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 074202    DOI: 10.1088/0256-307X/36/7/074202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage
Jian-Feng Li1, Yun-Fei Wang1, Ke-Yu Su1, Kai-Yu Liao1, Shan-Chao Zhang1, Hui Yan1**, Shi-Liang Zhu2,1**
1Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006
2National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093
Cite this article:   
Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su et al  2019 Chin. Phys. Lett. 36 074202
Download: PDF(892KB)   PDF(mobile)(881KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the generation of heralded single photons with Gaussian-shape temporal waveforms through the spatial light modulation technique in an atomic ensemble. Both the full width at half maximum and the peak position of the Gaussian waveform can be controlled while the single photon nature holds well. We also analyze the bandwidth of the generated single photons in frequency domain and show how the sidebands of the frequency spectrum are modified by the shape of the temporal waveform. The generated single photons are especially suited for the realization of high efficiency quantum storage based on electromagnetically induced transparency.
Received: 11 March 2019      Published: 20 June 2019
PACS:  42.50.-p (Quantum optics)  
  32.80.-t (Photoionization and excitation)  
  03.67.-a (Quantum information)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301800 and 2016YFA0302800, the National Natural Science Foundation of China under Grant Nos 11822403, 91636218, U1801661, 11704131, 11804105 and 11804104, the Natural Science Foundation of Guangdong Province under Grant Nos 2015TQ01X715 and 2018A0303130066, and the KPST of Guangzhou under Grant No 201804020055.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/7/074202       OR      https://cpl.iphy.ac.cn/Y2019/V36/I7/074202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian-Feng Li
Yun-Fei Wang
Ke-Yu Su
Kai-Yu Liao
Shan-Chao Zhang
Hui Yan
Shi-Liang Zhu
[1]Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J 2007 Science 315 966
[2]Tang J S, Li Y L, Xu X Y, Xiang G Y, Li C F and Guo G C 2012 Nat. Photon. 6 600
[3]Yan H, Liao K Y, Deng Z T, He J Y, Xue Z Y, Zhang Z M and Zhu S L 2015 Phys. Rev. A 91 042132
[4]Kolobov M I 1999 Rev. Mod. Phys. 71 1539
[5]Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[6]Galindo A and Martín-Delgado M A 2002 Rev. Mod. Phys. 74 347
[7]Nicolas S, Christoph S, Hugues de R and Nicolas G 2011 Rev. Mod. Phys. 83 33
[8]Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y H 1995 Phys. Rev. Lett. 75 4337
[9]Wang F Y, Shi B S and Guo G C 2008 Opt. Lett. 33 2191
[10]Bao X H, Qian Y, Yang J, Zhang H, Chen Z B, Yang T and Pan J W 2008 Phys. Rev. Lett. 101 190501
[11]Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[12]Hedges M P, Longdell J J, Li Y and Sellars M J 2010 Nature 465 1052
[13]Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K and Buchler B C 2016 Optica 3 100
[14]Reim K F, Michelberger P, Lee K C, Nunn J, Langford N K and Walmsley I A 2011 Phys. Rev. Lett. 107 053603
[15]Chen Y H, Lee M J, Wang I C, Du S W, Chen Y F, Chen Y C and Yu I A 2013 Phys. Rev. Lett. 110 083601
[16]Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu Ite A and Chen Y C 2018 Phys. Rev. Lett. 120 183602
[17]Vernaz-Gris P, Huang K, Cao M, Alexandra S S and Julien L 2018 Nat. Commun. 9 363
[18]Balic V, Braje D A, Kolchin P, Yin G Y and Harris S E 2005 Phys. Rev. Lett. 94 183601
[19]Kolchin P, Du S W, Belthangady C, Yin G Y and Harris S E 2006 Phys. Rev. Lett. 97 113602
[20]Yan H, Zhang S C, Chen J F, Loy M M T, Wong G K L and Du S W 2011 Phys. Rev. Lett. 106 033601
[21]Shu C, Chen P, Chow T K A, Zhu L B, Xiao Y H, Loy M M T and Du S W 2016 Nat. Commun. 7 12783
[22]Srivathsan B, Gulati G K, Chng B, Maslennikov G, Matsukevich D and Kurtsiefer C 2013 Phys. Rev. Lett. 111 123602
[23]Liao K Y, Yan H, He J Y, Du S W, Zhang Z M and Zhu S L 2014 Phys. Rev. Lett. 112 243602
[24]Liao K Y, Yan H, He J Y, Huang W, Zhang Z M and Zhu S L 2014 Chin. Phys. Lett. 31 034205
[25]Farrera P, Heinze G, Albrecht B, Ho M, Chavez M, Teo C, Sangouard N and de Riedmatten H 2016 Nat. Commun. 7 13556
[26]Chen Q F, Shi B S, Feng M, Zhang Y S and Guo G C 2008 Opt. Express 16 21708
[27]Lu X S, Chen Q F, Shi B S and Guo G C 2009 Chin. Phys. Lett. 26 064204
[28]Chen P, Zhou S Y, Xu Z, Duan Y F, Cui G D, Hong T and Wang Y Z 2011 Chin. Phys. Lett. 28 074214
[29]Han Z G, Qian P, Zhou L, Chen J F and Zhang W P 2015 Sci. Rep. 5 9126
[30]Park K K, Kim J H, Zhao T M, Cho Y W and Kim Y H 2017 Optica 4 1293
[31]Novikova I, Gorshkov A V, Phillips D F, Sorensen A S, Lukin M D and Walsworth R L 2007 Phys. Rev. Lett. 98 243602
[32]Wang Y M, Minář J, Sheridan L and Scarani V 2011 Phys. Rev. A 83 063842
[33]Liu C, Sun Y, Zhao L W, Zhang S C, Loy M M T and Du S W 2014 Phys. Rev. Lett. 113 133601
[34]Kolchin P, Belthangady C, Du S W, Yin G Y and Harris S E 2008 Phys. Rev. Lett. 101 103601
[35]Chen J F, Zhang S C, Yan H, Loy M M T, Wong G K L and Du S W 2010 Phys. Rev. Lett. 104 183604
[36]Zhao L, Guo X, Sun Y, Su Y, Loy M M T and Du S W 2015 Phys. Rev. Lett. 115 193601
[37]Zhao L W, Su Y M and Du S W 2016 Phys. Rev. A 93 033815
[38]Ketterle W, Davis K B, Joffe M A, Martin A and Pritchard D E 1993 Phys. Rev. Lett. 70 2253
[39]Lin Y W, Chou H C, Dwivedi P P, Chen Y C and Yu I A 2008 Opt. Express 16 3753
[40]Zhang S, Chen J F, Liu C, Zhou S, Loy M M T, Wong G K L and Du S W 2012 Rev. Sci. Instrum. 83 073102
[41]Grangier P, Roger G and Aspect A 1986 Europhys. Lett. 1 173
[42]Zhang S C, Zhou S Y, Loy M M T, Wong G K L and Du S W 2011 Opt. Lett. 36 4530
[43]Chen J F, Jeong H, Feng L, Loy M M T, Wong G K L and Du S W 2010 Phys. Rev. Lett. 104 223602
[44]Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H and Zhu S L 2019 Nat. Photon. 13 346
Related articles from Frontiers Journals
[1] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 074202
[2] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 074202
[3] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 074202
[4] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 074202
[5] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 074202
[6] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 074202
[7] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 074202
[8] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 074202
[9] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 074202
[10] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 074202
[11] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 074202
[12] Ya-Jing Jiang, Hao Lü, Hui Jing. Superradiance-Driven Phonon Laser[J]. Chin. Phys. Lett., 2018, 35(4): 074202
[13] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 074202
[14] A. Asghari Nejad, H. R. Askari, H. R. Baghshahi. Bistability in a Hybrid Optomechanical System under the Effect of a Nonlinear Medium[J]. Chin. Phys. Lett., 2017, 34(8): 074202
[15] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 074202
Viewed
Full text


Abstract