Chin. Phys. Lett.  2019, Vol. 36 Issue (5): 054204    DOI: 10.1088/0256-307X/36/5/054204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator
Pei Yuan1,2†, Xiao-Guang Zhang3†, Jun-Ming An1,2, Peng-Gang Yin3, Yue Wang1**, Yuan-Da Wu1,2**
1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049
3Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100083
Cite this article:   
Pei Yuan, Xiao-Guang Zhang, Jun-Ming An et al  2019 Chin. Phys. Lett. 36 054204
Download: PDF(2177KB)   PDF(mobile)(2178KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The improved performance of a wavelength-tunable arrayed waveguide grating (AWG) is demonstrated, including the crosstalk, insertion loss and the wavelength tuning efficiency. A reduced impact of the fabrication process on the AWG is achieved by the design of bi-level tapers. The wavelength tuning of the AWG is achieved according to the thermo-optic effect of silicon, and uniform heating of the silicon waveguide layer is achieved by optimizing the heater design. The fabricated AWG shows a minimum crosstalk of 16 dB, a maximum insertion loss of 3.91 dB and a wavelength tuning efficiency of 8.92 nm/W, exhibiting a $\sim $8 dB improvement of crosstalk, $\sim $2.1 dB improvement of insertion loss and $\sim $5 nm/W improvement of wavelength tuning efficiency, compared to our previous reported results.
Received: 23 January 2019      Published: 17 April 2019
PACS:  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
Fund: Supported by the National Key R&D Program of China under Grant No 2016YFB0402504.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/5/054204       OR      https://cpl.iphy.ac.cn/Y2019/V36/I5/054204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pei Yuan
Xiao-Guang Zhang
Jun-Ming An
Peng-Gang Yin
Yue Wang
Yuan-Da Wu
[1]Dai D 2017 J. Lightwave Technol. 35 572
[2]Soref R 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678
[3]Rickman A 2014 Nat. Photon. 8 579
[4]Yuan C, Dai J, Jia H, Ding J, Zhang L, Fu X and Yang L 2018 J. Semicond. 39 124008
[5]Pan Z, Fu S, Lu L, Li D, Chang W, Liu D and Zhang M 2018 Photon. Res. 6 380
[6]Song B, Stagarescu C, Ristic S, Behfar A and Klamkin J 2016 Opt. Express 24 10435
[7]Shi M J, Ban Y, Yu B M, Rhim J, Zimmermann L and Choi W Y 2016 IEEE J. Sel. Top. Quantum Electron. 22 3400207
[8]Wu W, Cheng B, Zheng J, Liu Z, Li C, Zuo Y and Xue C 2017 J. Semicond. 38 114003
[9]Errando-Herranz C, Das S and Gylfason K B 2018 Opt. Express 26 2675
[10]Chiles J and Fathpour S 2017 J. Opt. 19 053001
[11]Yuan P, Wang Y, Wu Y, An J and Hu X 2018 Opt. Laser Technol. 102 166
[12]Liu R, Wang Y, Yin D, Ye H, Yang X and Han Q 2017 J. Semicond. 38 054007
[13]Li K L, An J M, Zhang J S, Wang Y, Wang L L, Li J G, Wu Y D, Yin X J and Hu X W 2016 Chin. Phys. B 25 124209
[14]Wang J, Sheng Z, Li L, Pang A, Wu A, Li W, Wang X, Zou S, Qi M and Gan F 2014 Opt. Express 22 9395
[15]Pathak S, Vanslembrouck M, Dumon P, Thourhout D V and Bogaerts W 2013 J. Lightwave Technol. 31 87
[16]Yuan P, Wang Y, Wu Y, An J and Hu X 2018 Chin. Opt. Lett. 16 010601
[17]Li C Y, An J M, Wang J Q, Wang L L, Zhang J S, Li J G, Wu Y D, Wang Y, Yin X J, Li Y and Zhong F 2017 Chin. Phys. Lett. 34 104202
[18]Yang Y, Hu X, Song J, Fang Q, Yu M, Tu X, Lo G Q and Rusli 2015 IEEE Photon. Technol. Lett. 27 2351
Related articles from Frontiers Journals
[1] A. M. Markom, S. J. Tan, H. Haris, M. C. Paul, A. Dhar, S. Das, S. W. Harun. Experimental Observation of Bright and Dark Solitons Mode-Locked with Zirconia-Based Erbium-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(2): 054204
[2] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Leaky Modes in Ag Nanowire over Substrate Configuration[J]. Chin. Phys. Lett., 2017, 34(9): 054204
[3] XIAO Li-Ping, WANG Fa-Qiang, LIANG Rui-Sheng, ZOU Shi-Wei, HU Miao. A High-Sensitivity Refractive-Index Sensor Based on Plasmonic Waveguides Asymmetrically Coupled with a Nanodisk Resonator[J]. Chin. Phys. Lett., 2015, 32(07): 054204
[4] LI Lu, PANG Li-Hui, ZHOU Zhi-Guang, ZHANG Ai-Dong, HE Jian-Li, SI Jin-Hai, LIN Ao-Xiang. Design of a Solid-Core Large-Mode-Area Bragg Fiber[J]. Chin. Phys. Lett., 2015, 32(5): 054204
[5] LI Dong-Dong, SHE Jiang-Bo, WANG Chang-Shun, PENG Bo. Visible Light Driven Photocatalytic Reactor Based on Micro-structured Polymer Optical Fiber Preform[J]. Chin. Phys. Lett., 2014, 31(05): 054204
[6] WU Huai-Zhi, YANG Zhen-Biao. Distributed Qutrit–Qutrit Entanglement through Laser-Driven Resonant Interaction[J]. Chin. Phys. Lett., 2014, 31(2): 054204
[7] ZHENG Wan-Jun, CHENG Jian-Qun, RUAN Shuang-Chen**, ZHANG Min, LIU Wen-Li, YANG Xi, ZHANG Ying-Ying. A Switchable Multi-wavelength Erbium-Doped Photonic Crystal Fiber Laser with Linear Cavity Configuration[J]. Chin. Phys. Lett., 2012, 29(12): 054204
[8] YU Xue-Lian, YAO Yong, XIAO Jun-Jun, TIAN Jia-Jun. A Practical Approach to Synthesize Multi-channel Fiber Bragg Grating with Right-Angled Triangular Spectrum[J]. Chin. Phys. Lett., 2012, 29(11): 054204
[9] YAN Hao-Zhe, PENG Jing-Gang, LI Jin-Yan, YANG Lü-Yun. Numerical Study of Plasmonic Modes in Hexagonally Arranged Metal Nanowire Array[J]. Chin. Phys. Lett., 2012, 29(7): 054204
[10] LIU Tian, TONG Wei-Jun, ZHANG Fang-Hai, ZHANG Xin-Ben, DAI Neng-Li**, LI Jin-Yan . A New Ge/F−Co-doped SMF with Enhanced SBS Threshold Fabricated by PCVD[J]. Chin. Phys. Lett., 2011, 28(10): 054204
[11] ZHOU Liang, LI Zhi-Yong**, XIAO Xi, XU Hai-Hua, FAN Zhong-Chao, HAN Wei-Hua, YU Yu-De, YU Jin-Zhong. A Compact and Highly Efficient Silicon-Based Asymmetric Mach–Zehnder Modulator with Broadband Spectral Operation[J]. Chin. Phys. Lett., 2011, 28(7): 054204
[12] WANG Jing-Li, **, YAO Jian-Quan, CHEN He-Ming, LI Zhong-Yang . A Simple Birefringent Terahertz Waveguide Based on Polymer Elliptical Tube[J]. Chin. Phys. Lett., 2011, 28(1): 054204
[13] LI Yu-He, FAN Wan-De**, SHENG Qiu-Qin . A Novel Photonic Quasicrystal Fiber with Broadband Large Negative Dispersion[J]. Chin. Phys. Lett., 2010, 27(11): 054204
[14] CHENG Tong-Lei, CHAI Lu**, HU Ming-Lie, LI Yan-Feng, WANG Ching-Yue . Theoretical Study on a Cluster-Seven-Core Photonic Crystal Fiber with High Nonlinearity and High-Power Endurance[J]. Chin. Phys. Lett., 2010, 27(11): 054204
[15] ZHANG Yun-Jun, WANG Wei, ZHOU Ren-Lai, SONG Shi-Fei, TIAN Yi, WANG Yue-Zhu. Narrow Linewidth Tm3+-Doped Large Core Fiber Laser Based on a Femtosecond Written Fiber Bragg Grating[J]. Chin. Phys. Lett., 2010, 27(7): 054204
Viewed
Full text


Abstract