CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes |
Meng Ye, Cai-Juan Xia**, Bo-Qun Zhang, Yue Ma |
School of Science, Xi'an Polytechnic University, Xi'an 710048
|
|
Cite this article: |
Meng Ye, Cai-Juan Xia, Bo-Qun Zhang et al 2019 Chin. Phys. Lett. 36 047101 |
|
|
Abstract Based on nonequilibrium Green's function method in combination with density functional theory, we study the electronic transport properties of dipyrimidinyl-diphenyl molecules embedded in a carbon atomic chain sandwiched between zigzag graphene nanoribbon and different edge geometries C$_{2}$N-$h$2D electrodes. Compared with the graphene electrodes, the C$_{2}$N-$h$2D electrode can cause rectifying and negative differential resistance effects. For C$_{2}$N-$h$2D with zigzag edges, a more remarkable negative differential resistance phenomenon appears, whereas armchair-edged C$_{2}$N-$h$2D can give rise to much better rectifying behavior. These results suggest that this system can be potentially useful for designs of logic and memory devices.
|
|
Received: 24 December 2018
Published: 23 March 2019
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
85.65.+h
|
(Molecular electronic devices)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11004156, the Science and Technology Star Project of Shaanxi Province under Grant No 2016KJX-45, and the Graduate Innovation Foundation of Xi'an Polytechnic University under Grant No chx201880. |
|
|
[1] | Huang J, Xu K, Lei S L, Su H B, Yang S F, Li Q X and Yang J L 2012 J. Chem. Phys. 136 064707 | [2] | He Y D, Dong H L, Li T, Wang C L, Shao W, Zhang Y J, Jiang L and Hu W P 2010 Appl. Phys. Lett. 97 133301 | [3] | Areshkin D A, Gunlycke D and White C T 2007 Nano Lett. 7 204 | [4] | Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 | [5] | Guo X S, Lu B A and Xie E Q 2011 Chin. Phys. Lett. 28 076803 | [6] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 | [7] | Deretzis I, Fiori G, Iannaccone G and La A 2010 Phys. Rev. B 81 085427 | [8] | He J J, Guo Y D and Yan X H 2017 Sci. Rep. 7 43922 | [9] | Zhang R Q, Li B and Yang J 2015 Nanoscale 7 14062 | [10] | Schwierz F 2010 Nat. Nanotechnol. 5 487 | [11] | Liao L, Lin Y C, Bao M Q, Cheng R, Bai J W, Liu Y, Qu Y Q, Wang K L, Huang Y and Duan X F 2010 Nature 467 305 | [12] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 | [13] | Li J, Yang S Y and Li S S 2015 Chin. Phys. Lett. 32 077102 | [14] | Liu Y, Xia C J, Zhang B Q, Zhang T T, Cui Y and Hu Z Y 2018 Chin. Phys. Lett. 35 067101 | [15] | Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M, Choi H J, Seo J M, Bae S Y, Sohn S D, Park N, Oh J H, Shin H J and Baek J B 2015 Nat. Commun. 6 6486 | [16] | Sahin H 2015 Phys. Rev. B 92 085421 | [17] | He J J, Guo Y D, Yan X H and Zeng H L 2018 Physica B 528 1 | [18] | Song Y, Xie Z, Zhang G P, Ma Y and Wang C K 2013 Phys. Chem. C 117 20951 | [19] | Zhang G P, Hu G C, Li Z L and Wang C K 2011 Chin. Phys. B 20 127304 | [20] | Li J C and Gong X 2013 Org. Electron. 14 2451 | [21] | Ye M, Xia C J, Yang A Y, Zhang B Q, Su Y H, Tu Z Y and Ma Y 2017 Chin. Phys. Lett. 34 117101 | [22] | Song Y, Bao D L, Xie Z, Zhang G P and Wang C K 2013 Phys. Lett. A 377 3228 | [23] | Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 | [24] | Monkhorst H and Pack J 1976 Phys. Rev. B 13 5188 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|