Chin. Phys. Lett.  2019, Vol. 36 Issue (4): 047101    DOI: 10.1088/0256-307X/36/4/047101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes
Meng Ye, Cai-Juan Xia**, Bo-Qun Zhang, Yue Ma
School of Science, Xi'an Polytechnic University, Xi'an 710048
Cite this article:   
Meng Ye, Cai-Juan Xia, Bo-Qun Zhang et al  2019 Chin. Phys. Lett. 36 047101
Download: PDF(750KB)   PDF(mobile)(745KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on nonequilibrium Green's function method in combination with density functional theory, we study the electronic transport properties of dipyrimidinyl-diphenyl molecules embedded in a carbon atomic chain sandwiched between zigzag graphene nanoribbon and different edge geometries C$_{2}$N-$h$2D electrodes. Compared with the graphene electrodes, the C$_{2}$N-$h$2D electrode can cause rectifying and negative differential resistance effects. For C$_{2}$N-$h$2D with zigzag edges, a more remarkable negative differential resistance phenomenon appears, whereas armchair-edged C$_{2}$N-$h$2D can give rise to much better rectifying behavior. These results suggest that this system can be potentially useful for designs of logic and memory devices.
Received: 24 December 2018      Published: 23 March 2019
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  85.65.+h (Molecular electronic devices)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11004156, the Science and Technology Star Project of Shaanxi Province under Grant No 2016KJX-45, and the Graduate Innovation Foundation of Xi'an Polytechnic University under Grant No chx201880.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/4/047101       OR      https://cpl.iphy.ac.cn/Y2019/V36/I4/047101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meng Ye
Cai-Juan Xia
Bo-Qun Zhang
Yue Ma
[1]Huang J, Xu K, Lei S L, Su H B, Yang S F, Li Q X and Yang J L 2012 J. Chem. Phys. 136 064707
[2]He Y D, Dong H L, Li T, Wang C L, Shao W, Zhang Y J, Jiang L and Hu W P 2010 Appl. Phys. Lett. 97 133301
[3]Areshkin D A, Gunlycke D and White C T 2007 Nano Lett. 7 204
[4]Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[5]Guo X S, Lu B A and Xie E Q 2011 Chin. Phys. Lett. 28 076803
[6]Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[7]Deretzis I, Fiori G, Iannaccone G and La A 2010 Phys. Rev. B 81 085427
[8]He J J, Guo Y D and Yan X H 2017 Sci. Rep. 7 43922
[9]Zhang R Q, Li B and Yang J 2015 Nanoscale 7 14062
[10]Schwierz F 2010 Nat. Nanotechnol. 5 487
[11]Liao L, Lin Y C, Bao M Q, Cheng R, Bai J W, Liu Y, Qu Y Q, Wang K L, Huang Y and Duan X F 2010 Nature 467 305
[12]Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[13]Li J, Yang S Y and Li S S 2015 Chin. Phys. Lett. 32 077102
[14]Liu Y, Xia C J, Zhang B Q, Zhang T T, Cui Y and Hu Z Y 2018 Chin. Phys. Lett. 35 067101
[15]Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M, Choi H J, Seo J M, Bae S Y, Sohn S D, Park N, Oh J H, Shin H J and Baek J B 2015 Nat. Commun. 6 6486
[16]Sahin H 2015 Phys. Rev. B 92 085421
[17]He J J, Guo Y D, Yan X H and Zeng H L 2018 Physica B 528 1
[18]Song Y, Xie Z, Zhang G P, Ma Y and Wang C K 2013 Phys. Chem. C 117 20951
[19]Zhang G P, Hu G C, Li Z L and Wang C K 2011 Chin. Phys. B 20 127304
[20]Li J C and Gong X 2013 Org. Electron. 14 2451
[21]Ye M, Xia C J, Yang A Y, Zhang B Q, Su Y H, Tu Z Y and Ma Y 2017 Chin. Phys. Lett. 34 117101
[22]Song Y, Bao D L, Xie Z, Zhang G P and Wang C K 2013 Phys. Lett. A 377 3228
[23]Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[24]Monkhorst H and Pack J 1976 Phys. Rev. B 13 5188
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 047101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 047101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 047101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 047101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 047101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 047101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 047101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 047101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 047101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 047101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 047101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 047101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 047101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 047101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 047101
Viewed
Full text


Abstract