Chin. Phys. Lett.  2019, Vol. 36 Issue (4): 045201    DOI: 10.1088/0256-307X/36/4/045201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Impact of Sheath Boundary Conditions and Magnetic Flutter on Evolution and Distribution of Transient Particle and Heat Fluxes in the Edge-Localized Mode Burst by Experimental Advanced Superconducting Tokamak Simulation
Yan-Bin Wu1,2,3, Tian-Yang Xia3**, Fang-Chuan Zhong1**, Bin Gui3, EAST Team
1College of Science, Donghua University, Shanghai 201620
2School of Physics and Electronic Engineering, Anqing Normal University, Anqing 246133
3Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031
Cite this article:   
Yan-Bin Wu, Tian-Yang Xia, Fang-Chuan Zhong et al  2019 Chin. Phys. Lett. 36 045201
Download: PDF(1527KB)   PDF(mobile)(1529KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To study the evolution and distribution of the transient particle and heat fluxes during the edge-localized modes (ELMs) burst on the experimental advanced superconducting tokamak (EAST), the BOUT$^{++}$ six-field two-fluid model with sheath boundary conditions (SBCs) and magnetic flutter terms in the parallel thermal conduction is used to simulate the evolution of the profiles and growing process of the fluxes at divertor targets. Although SBCs hardly play a role in the linear phase, in the nonlinear phase both SBCs and magnetic flutter can change the dominant toroidal mode. SBCs are able to broaden the frequency distribution of the turbulence. The magnetic flutter increases the ELM size from 2.8% to 8.4%, and it doubles the amplitudes of the radial heat and particle transport coefficients at outer midplane (OMP), at around 1.0 m$^{2}$s$^{-1}$. It is then able to increase the particle and heat flux at the divertor targets and to broaden the radial distribution of the parallel heat flux towards the targets.
Received: 07 November 2018      Published: 23 March 2019
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.55.Dy (General theory and basic studies of plasma lifetime, particle and heat loss, energy balance, field structure, etc.)  
  52.55.Rk (Power exhaust; divertors)  
Fund: Supported by the National Key R&D Program of China under Grant Nos 2017YFE0301100, 2017YFE0301101, 2017YFE0301104 and 2014GB106001, the National Natural Science Foundation of China under Grant Nos 11275047, 11675217, 11505236 and 11405215, the Youth Innovation Promotion Association Chinese Academy of Sciences under Grant No 2017479, and the K. C. Wong Education Foundation.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/4/045201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I4/045201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan-Bin Wu
Tian-Yang Xia
Fang-Chuan Zhong
Bin Gui
EAST Team
[1]Connor J W et al 1998 Phys. Plasmas 5 2687
[2]Snyder P B et al 2002 Phys. Plasmas 9 2037
[3]Xu X Q et al 2011 Nucl. Fusion 51 103040
[4]Zohm H 1996 Plasma Phys. Control. Fusion 38 1213
[5]Dudson B D et al 2009 Comput. Phys. Commun. 180 1467
[6]Xu X Q et al 2010 Phys. Rev. Lett. 105 175005
[7]Liu Z X et al 2012 Phys. Plasmas 19 102502
[8]Chen B et al 2017 Nucl. Fusion 57 116025
[9]Makowski M A, Elder D, Gray T K, LaBombard B, Lasnier C J, Leonard A W, Maingi R, Osborne T H, Stangeby P C, Terry J L and Watkins J 2012 Phys. Plasmas 19 056122
[10]Ricci P and Rogers B 2013 Phys. Plasmas 20 010702
[11]Wu Y B, Xia T Y, Zhong F C, Zheng Z, Liu J B and Team EAST 2018 Plasma Phys. Control. Fusion 60 055007
[12]Xia T Y, Xu X Q, Wu Y B, Huang Y Q, Wang L, Zheng Z, Liu J B, Zang Q, Li Y Y, Zhao D and Team EAST 2017 Nucl. Fusion 57 116016
[13]Xu X Q, Umansky M V, Dudson B D and Snyder P B 2008 Commun. Comput. Phys. 4 949
[14]Xia T Y and Xu X Q 2015 Nucl. Fusion 55 113030
[15]Huijsmans G T A and Loarte A 2013 Nucl. Fusion 53 123023
[16]Lao L L, St H E, Peng Q, Ferron J R, Strait E J, Taylor T S, Meyer W H, Zhang C and You K I 2005 Fusion Sci. Technol. 48 968
[17]Gui B, Xia T Y, Xu X Q, Myra J R and Xiao X T 2018 Nucl. Fusion 58 026027
[18]Xi P W, Xu X Q, Wang X G and Xia T Y 2012 Phys. Plasmas 19 092503
[19]Xia T Y, Xu X Q and Xi P W 2013 Nucl. Fusion 53 073009
Related articles from Frontiers Journals
[1] Longwen Yan, Jinming Gao, Xianggan Miao, Zhihui Huang, Na Wu, Wenjin Chen, Ting Wu, Weice Wang, Liang Liu, Xiaoxue He, Kaiyang Yi, Yu He, Lin Nie, Zhongbing Shi, and Wulv Zhong. Scaling Laws of Heat Flux Width in the HL-2A Closed Divertor Tokamak[J]. Chin. Phys. Lett., 2022, 39(11): 045201
[2] Chang Jiang, Chao Dong, and Ding Li. Transverse Rutherford Scattering of Electron-Ion Collision in a Uniformly Magnetized Plasma[J]. Chin. Phys. Lett., 2022, 39(2): 045201
[3] Ming Xu, Guoqiang Zhong, Baolong Hao, Wei Shen, Liqun Hu, Wei Chen, Zhiyong Qiu, Xuexi Zhang, Youjun Hu, Yingying Li, Hailin Zhao, Haiqing Liu, Bo Lyu, and the EAST Team. Excitation of RSAEs during Sawteeth-Like Oscillation in EAST[J]. Chin. Phys. Lett., 2021, 38(8): 045201
[4] Feng Wang , Rui Zhao , Zheng-Xiong Wang, Yue Zhang , Zhan-Hong Lin , Shi-Jie Liu , and CFETR Team. PTC: Full and Drift Particle Orbit Tracing Code for $\alpha$ Particles in Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 045201
[5] Liming Yu, Wei Chen, Xiaoquan Ji, Peiwan Shi, Xuantong Ding, Zhongbing Shi, Ruirui Ma, Yumei Hou, Yonggao Li, Jiaxian Li, Jianyong Cao, Wulyu Zhong, Min Xu, and Xuru Duan. Observation of Multiple Broadband Alfvénic Chirping Modes in HL-2A NBI Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 045201
[6] Tong Liu , Lai Wei , Feng Wang, and Zheng-Xiong Wang . Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 045201
[7] Hao Shi, Wenlu Zhang, Chao Dong, Jian Bao, Zhihong Lin, Jintao Cao, and Ding Li. Temperature Gradient, Toroidal and Ion FLR Effects on Drift-Tearing Modes[J]. Chin. Phys. Lett., 2020, 37(8): 045201
[8] Wei Hu, Hong-Ying Feng, Wen-Lu Zhang. Comparison of ITG and TEM Microturbulence in DIII–D Tokamak[J]. Chin. Phys. Lett., 2019, 36(8): 045201
[9] Wei Hu, Hong-Ying Feng, Chao Dong. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas[J]. Chin. Phys. Lett., 2018, 35(10): 045201
[10] Wen Yang, Ding Li, Xue-qiao Xu. Effect of Hyper-Resistivity on Nonlinear Tearing Modes[J]. Chin. Phys. Lett., 2018, 35(6): 045201
[11] Jing-Bo Lin, Wen-Lu Zhang, Peng-Fei Liu, Chao Dong, Jin-Tao Cao, Ding Li. Particle Trajectory Integrator in Guiding Center Phase Space[J]. Chin. Phys. Lett., 2018, 35(2): 045201
[12] Zhong-Chao Sun, Zi-Wei Lian, Wei-Na Qiao, Jian-Gang Yu, Wen-Jia Han, Qing-Wei Fu, Kai-Gui Zhu. Microstructure and Deuterium Retention of Tungsten Deposited by Hollow Cathode Discharge in Deuterium Plasma[J]. Chin. Phys. Lett., 2017, 34(12): 045201
[13] Bo Shi, Zhen-Dong Yang, Bin Zhang, Cheng Yang, Kai-Fu Gan, Mei-Wen Chen, Jin-Hong Yang, Hui Zhang, Jun-Li Qi, Xian-Zu Gong, Xiao-Dong Zhang, Wei-Hua Wang. Heat Flux on EAST Divertor Plate in H-mode with LHCD/LHCD+NBI[J]. Chin. Phys. Lett., 2017, 34(9): 045201
[14] N. Hasanvand, S. Meshkani, M. Ghoranneviss. The Diffusion Coefficient Using Sawtooth Oscillation in IR-T1 Tokamak[J]. Chin. Phys. Lett., 2017, 34(8): 045201
[15] N. Hasanvand, M. R. Riazifar, R. Alipour, S. Meshkani, M. Ghoranneviss. Improving Plasma Confinement by Controlling Hard X-Ray[J]. Chin. Phys. Lett., 2016, 33(11): 045201
Viewed
Full text


Abstract