Chin. Phys. Lett.  2019, Vol. 36 Issue (4): 044302    DOI: 10.1088/0256-307X/36/4/044302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Source Ranging Using Ensemble Convolutional Networks in the Direct Zone of Deep Water
Yi-Ning Liu1,2, Hai-Qiang Niu1, Zheng-Lin Li1**
1State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Yi-Ning Liu, Hai-Qiang Niu, Zheng-Lin Li 2019 Chin. Phys. Lett. 36 044302
Download: PDF(3518KB)   PDF(mobile)(3519KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using deep convolutional neural networks as primary learners and a deep neural network as meta-learner, source ranging is solved as a regression problem with the ensemble learning method. Simulated acoustic data from the acoustic propagation model are used as the training data. Real data from an experiment in the South China Sea are used as the test data to demonstrate the performance. The results indicate that in the direct zone of deep water, signals received by a very deep receiver can be used to estimate the range of underwater sound source. Within 30 km, the mean absolute error of the range predictions is 1.0 km and the mean absolute percentage error is 7.9%.
Received: 14 January 2019      Published: 23 March 2019
PACS:  43.60.Np (Acoustic signal processing techniques for neural nets and learning systems)  
  43.60.Jn (Source localization and parameter estimation)  
  43.30.Wi (Passive sonar systems and algorithms, matched field processing in underwater acoustics)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11434012 and 11874061.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/4/044302       OR      https://cpl.iphy.ac.cn/Y2019/V36/I4/044302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi-Ning Liu
Hai-Qiang Niu
Zheng-Lin Li
[1]Duan R, Yang K D, Ma Y L and Lei B 2012 Chin. Phys. B 21 124301
[2]McCargar R and Zurk L M 2013 J. Acoust. Soc. Am. 133 EL320
[3]Michalopoulu Z H and Porter M B 1996 IEEE J. Oceanic Eng. 21 384
[4]Dosso S E and Wilmut M J 2012 J. Acoust. Soc. Am. 132 2273
[5]Krizenvsky A, Sutskever I and Hinton G E 2012 Int. Conf. Neural Inf. Process. Syst. (Nevada Am. 2–5 Dec 2012) 60 1097
[6]Szegedy C, Liu W et al 2015 Comput. Vision Pattern Recognit. (Boston, USA 8–10 June 2015) 1
[7]He K M, Zhang X Y et al 2016 Comput. Vision Pattern Recognit. (Las Vegas, USA 27–30 June 2016) 770
[8]Steinberg B Z, Beran M J, Chin S H et al 1991 J. Acoust. Soc. Am. 90 2081
[9]Ozard J M, Zakarauskas P and Ko P 1991 J. Acoust. Soc. Am. 90 2658
[10]Niu H Q, Reeves E and Gerstoft P 2017 J. Acoust. Soc. Am. 142 1176
[11]Niu H Q, Ozanich E and Gerstoft P 2017 J. Acoust. Soc. Am. 142 EL455
[12]Huang Z Q, Xu J, Gong Z X et al 2018 J. Acoust. Soc. Am. 143 2922
[13]Zhou Z H 2016 Machine Learning (Beijing: Tsinghua University Press) chap 8 p 171
[14]Breiman L 1996 IEEE Int. Workshop Mach. Learn. Signal Process. 24 49
[15]Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Comput. Ocean Acoustic (New York: Springer) 2nd edn chap 5 p 337
[16]Wu S L, Li Z L and Qin J X 2015 Chin. Phys. Lett. 32 124301
[17]Harrison C H 2011 J. Acoust. Soc. Am. 129 2863
Related articles from Frontiers Journals
[1] Wenjie Miao, Zhiang Linghu, Qiujiao Du, Pai Peng, and Fengming Liu. Superscattering of Underwater Sound via Deep Learning Approach[J]. Chin. Phys. Lett., 2023, 40(1): 044302
Viewed
Full text


Abstract