FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Multi-Path Ghost Imaging by Means of an Additional Time Correlation |
Rui Liu1, Ling-Jun Kong1, Yu Si1, Zhou-Xiang Wang1, Wen-Rong Qi1, Chenghou Tu1, Yongnan Li1**, Hui-Tian Wang1,2,3** |
1Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071 2National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
|
|
Cite this article: |
Rui Liu, Ling-Jun Kong, Yu Si et al 2019 Chin. Phys. Lett. 36 044205 |
|
|
Abstract Ghost imaging functions achieved by means of the spatial correlations between two photons is a new modality in imaging systems. With a small number of photons, ghost imaging is usually realized based on the position correlation of photon pairs produced from the spontaneous parametric down-conversion process. Here we demonstrate a way to realize multi-path ghost imaging by introducing an additional time correlation. Different delays of paths will induce the shift of the coincidence peak, which carries the information about objects. By choosing the suitable coincidence window, we obtain images of three objects simultaneously, with a visibility of 87.2%. This method provides insights and techniques into multi-parameter ghost imaging. It can be applied to other correlated imaging systems, for example, quantum spiral imaging.
|
|
Received: 11 February 2019
Published: 23 March 2019
|
|
PACS: |
42.30.Va
|
(Image forming and processing)
|
|
42.30.-d
|
(Imaging and optical processing)
|
|
42.65.Lm
|
(Parametric down conversion and production of entangled photons)
|
|
|
Fund: Supported by the National Key R&D Program of China under Grant Nos 2017YFA0303800 and 2017YFA0303700, the National Natural Science Foundation of China under Grant Nos 11534006, 11774183 and 11674184, and the Collaborative Innovation Center of Extreme Optics. |
|
|
[1] | Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429 | [2] | D'Angelo M, Kim Y H, Kulik S P and Shih Y H 2004 Phys. Rev. Lett. 92 233601 | [3] | Liu X, Wang F, Zhang M and Cai Y 2015 J. Opt. Soc. Am. A 32 910 | [4] | Tong Z, Cai Y and Korotkova O 2010 Opt. Commun. 283 3838 | [5] | Pelliccia D, Rack A, Scheel M, Cantelli V and Paganin D M 2016 Phys. Rev. Lett. 117 219902 | [6] | Yu H, Lu R, Han S, Xie H, Du G, Xiao T and Zhu D 2016 Phys. Rev. Lett. 117 113901 | [7] | Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601 | [8] | Yang Z, Zhao L J, Zhao X L, Qin W and Li J L 2015 Chin. Phys. B 25 024202 | [9] | Valencia A, Scarcelli G, D'Angelo M and Shih Y H 2005 Phys. Rev. Lett. 94 063601 | [10] | Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354 | [11] | Kong L J, Li Y N, Qian S X, Li S M, Tu C H and Wang H T 2013 Phys. Rev. A 88 013852 | [12] | Scarcelli G, Berardi V and Shih Y H 2006 Phys. Rev. Lett. 96 063602 | [13] | Meyers R, Deacon K S and Shih Y H 2008 Phys. Rev. A 77 041801(R) | [14] | Xu X, Li E, Shen X and Han S 2015 Chin. Opt. Lett. 13 071101 | [15] | Sun M, He X, Li M and Wu L A 2016 Chin. Opt. Lett. 14 040301 | [16] | Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F and Baraniuk R G 2008 IEEE Signal Process. Mag. 25 83 | [17] | Brida G, Genovese M and Berchera I R 2010 Nat. Photon. 4 227 | [18] | Malik M, Magaña-Loaiza O S and Boyd R W 2012 Appl. Phys. Lett. 101 241103 | [19] | Howl, G A, James S, Lum D J and Howell J C 2014 Phys. Rev. Lett. 112 253602 | [20] | Morris P A, Aspden R S, Bell J E C, Boyd R W and Padgett M J 2015 Nat. Commun. 6 5913 | [21] | Genovese M 2016 J. Opt. 18 073002 | [22] | Tetienne J P, Dontschuk N, Broadway D A, Stacey A, Simpson D A and Hollenberg L C L 2017 Sci. Adv. 3 e1602429 | [23] | Xu Z H, Chen W, Penuelas J, Padgett M and Sun M J 2018 Opt. Express 26 2427 | [24] | Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602 | [25] | Scarcelli G, Berardi V and Shih Y H 2006 Appl. Phys. Lett. 88 061106 | [26] | Ferri F, Magatti D, Sala V G and Gatti A 2008 Appl. Phys. Lett. 92 261109 | [27] | Chan K W C 2012 Opt. Lett. 37 2739 | [28] | Gong W L 2015 Photon. Res. 3 234 | [29] | Yang X, Zhang Y, Xu L, Yang C H, Wang Q, Liu Y H and Zhao Y 2015 Chin. Phys. B 24 124202 | [30] | Jack B, Leach J, Romero J, Franke-Arnold S, Ritsch-Marte M, Barnett S M and Padgett M J 2009 Phys. Rev. Lett. 103 083602 | [31] | Zhao S M, Ding J, Dong X L and Bao B Y 2011 Chin. Phys. Lett. 28 124207 | [32] | Uribe-Patarroyo N, Fraine A, Simon D S, Minaeva O and Sergienko A V 2013 Phys. Rev. Lett. 110 043601 | [33] | Zhang D J, Li H G, Zhao Q L, Wang S, Wang H B, Xiong J and Wang K G 2015 Phys. Rev. A 92 013823 | [34] | Chan K W C, O'Sullivan M N, Malik M and Boyd R W 2009 Phys. Rev. A 79 033808 | [35] | Meyers R E, Deacon K S and Shih Y H 2012 Appl. Phys. Lett. 100 131114 | [36] | Xue Y L, Wan R G, Feng F and Zhang T Y 2014 Appl. Opt. 53 3035 | [37] | Li D, Li X, Qin Y and Cheng Y 2014 IEEE Trans. Geosci. Remote Sens. 52 2261 | [38] | Zhang A X, He Y H, Wu L A, Chen L M and Wang B B 2018 Optica 5 374 | [39] | Fickler R, Krenn M, Lapkiewicz R, Ramelow S and Zeilinger A 2013 Sci. Rep. 3 1914 | [40] | Aspden R S, Gemmell N R, Morris P A, Tasca D S, Mertens L, Tanner M G, Kirkwood R A, Ruggeri A, Tosi A and Boyd R W 2015 Optica 2 1049 | [41] | Gatti A, Bache M, Magatti D, Brambilla E, Ferri F and Lugiato L A 2006 J. Mod. Opt. 53 739 | [42] | Li M F, Zhang Y R, Luo K H, Wu L A and Fan H 2013 Phys. Rev. A 87 033813 | [43] | Yuan S, Liu X, Z X, Li Z and Yang Y 2016 J. Opt. 45 92 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|