FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
The 10kW Level High Brightness Face-Pumped Slab Nd:YAG Amplifier with a Hybrid Cooling System |
Shuai Li1,3, Ya-Ding Guo1,3, Zhong-Zheng Chen1, Lin Zhang1,3, Ke-Ling Gong1,3, Zhi-Feng Zhang1,3, Bao-Shan Wang1, Jian Xu1, Yi-Ting Xu1**, Lei Yuan1, Yang Kou1, Yang Liu1, Yan-Yong Lin1,2, Qin-Jun Peng1**, Zu-Yan Xu1,2 |
1Key Lab of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 2Key Lab of Function Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 3University of Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
Shuai Li, Ya-Ding Guo, Zhong-Zheng Chen et al 2019 Chin. Phys. Lett. 36 044204 |
|
|
Abstract We demonstrate a high power, high brightness, slab amplifier based on face-pumped Nd:YAG slab gain modules, having a high efficient hybrid cooling system of the conduction cooling and forced convection cooling. Using a single gain module, a laser output power up to 4.5 kW with a remarkable optical-optical conversion efficiency of 51% is realized, indicating an excellent lasing performance of the Nd:YAG slab module. The amplifier operates at a repetition rate of 700 Hz and delivers a maximum average output power exceeding 10.5 kW with pulse duration of 150 μs. A good beam quality factor is measured to be $\beta=1.9$. To the best of our knowledge, this is the highest brightness for a 10 kW level Nd:YAG slab amplifier.
|
|
Received: 31 January 2019
Published: 23 March 2019
|
|
PACS: |
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
42.60.Lh
|
(Efficiency, stability, gain, and other operational parameters)
|
|
42.15.Dp
|
(Wave fronts and ray tracing)
|
|
|
|
|
[1] | Kelly T J 1979 AIP Conf. Proc. 50 215 | [2] | Bian Q, Bo Y, Zuo J W et al 2016 Opt. Lett. 41 1732 | [3] | Ostermeyer M, Klemz G, Kubina P et al 2002 Appl. Opt. 41 7573 | [4] | Xu Y T, Xu J L, Guo Y D et al 2010 Appl. Opt. 49 4576 | [5] | Choubey A, Vishwakarma S C, Misra P et al 2013 Rev. Sci. Instrum. 84 073108 | [6] | Rutherford T S, Tulloch W M, Sinha S et al 2001 Opt. Lett. 26 986 | [7] | Liu L, Zhou S H, Liu Y et al 2017 Chin. Phys. Lett. 34 064202 | [8] | Chen Y, Liu W, Bo Y et al 2013 Appl. Phys. B 111 111 | [9] | Chen Z Z, Xu Y T, Guo Y D et al 2015 Appl. Opt. 54 5011 | [10] | Chen Y Z, Fan Z W, Guo G Y et al 2017 Opt. Mater. 71 125 | [11] | Guo G Y, Chen Y Y, He J G et al 2017 Opt. Commun. 400 50 | [12] | Ma X H, Bi J Z, Hou X et al 2009 Optik 120 567 | [13] | Puncken O, Winkelmann L, Frede M et al 2012 Appl. Opt. 51 7586 | [14] | Tang B, Zhou T J, Wang D et al 2015 Appl. Opt. 54 2693 | [15] | Xue Z Z, Guo Y D, Chen Z Z et al 2015 Opt. Laser Technol. 75 71 | [16] | Potemkin A K, Barmashova T V, Kirsanov A V et al 2007 Appl. Opt. 46 4423 | [17] | Yang P, Ning Y, Lei X et al 2010 Opt. Express 18 7121 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|