FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm |
Li-Jiao He1,3, Ke Liu1,2**, Nan Zong1,2, Zhao Liu1, Zhi-Min Wang1,2, Yong Bo1,2, Xiao-Jun Wang1,2,, Qin-Jun Peng1,2, Da-Fu Cui1,2, Zu-Yan Xu1,2 |
1Key Lab of Solid-state Lasers, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 2Key Lab of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 3University of Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
Li-Jiao He, Ke Liu, Nan Zong et al 2019 Chin. Phys. Lett. 36 044202 |
|
|
Abstract We report a high conversion efficiency Q-switched Nd:YVO$_{4}$/KTiOAsO$_{4}$ (KTA) intracavity optical parametric oscillator (IOPO) operating near 3.5 μm based on direct 880 nm laser diode (LD) pumping. A maximum average idler output power of 2.6 W with a pulse width of about 7.9 ns is achieved under an absorbed LD power of 45.4 W at a pulse repetition rate (PRR) of 10 kHz. The maximum optical-optical conversion efficiency from LD power to OPO mid-infrared (MIR) output of 6.74% is achieved. To our knowledge, this is the highest conversion efficiency for a KTA-IOPO by exploiting a Q-switched laser as the parent fundamental pump source. The beam quality factors $M^{2}$ of the MIR beam at the full output power with a PRR of 10 kHz are within 2.12 in both the horizontal and vertical directions, indicating a near Gaussian mode.
|
|
Received: 16 January 2019
Published: 23 March 2019
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61505226 and 61535013, and the Fund of Chinese Academy of Sciences under Grant No 6141A01071701. |
|
|
[1] | Liu J, Liu Q, Yan X, Chen H and Gong H 2010 Laser Phys. Lett. 7 630 | [2] | Chen D W and Masters K 2001 Opt. Lett. 26 25 | [3] | Lancaster D G 2009 Opt. Commun. 282 272 | [4] | Zhang B G, Xu D G, Wang P, Feng J, Zhang T L and Yao J Q 2008 Chin. Phys. B 17 633 | [5] | Yao B Q, Shen Y J, Duan X M, Dai T Y, Ju Y L and Wang Y Z 2014 Opt. Lett. 39 6589 | [6] | Xiong B, Guo L, Hou W, Lin X C and Li J M 2011 Laser Phys. 21 362 | [7] | Duan Y M, Zhu H Y, Ye Y L, Zhang D, Zhang G and Tang D Y 2014 Opt. Lett. 39 1314 | [8] | Miao J G, Peng J Y, Wang B S and Tan H M 2008 Appl. Opt. 47 4287 | [9] | Dong X L, Zhang B T, He J L, Huang H T, Yang K J, Xu J L, Zuo C H, Zhao S, Qiu G and Liu Z L 2009 Opt. Commun. 282 1668 | [10] | Wu R F, Lai K S, Wong H F, Xie W J, Lim Y L and Lau E 2001 Opt. Express 8 694 | [11] | Bai F, Wang Q P, Liu Z J, Zhang X Y, Lan W X, Tao X T and Sun Y X 2013 Appl. Phys. B 112 83 | [12] | Zhong K, Yao J Q, Xu D G, Wang J L, Li J S and Wang P 2010 Appl. Phys. B 100 749 | [13] | Frede M, Wilhelm R and Kracht D 2006 Opt. Lett. 31 3618 | [14] | Cui L, Zhang H L, Xu L, Li J, Yan Y, Duan C, Sha P F and Xin J G 2010 Chin. Phys. Lett. 27 114204 | [15] | Mao Y F, Zhang H L, Xu L, Deng B, Xing J C, Xin J G and Jiang Y 2014 Chin. Phys. Lett. 31 074206 | [16] | Sheng Q, Ding X, Shi C P, Yin S J, Li B, Shang G, Yu X Y, Wen W Q and Yao J Q 2012 Opt. Express 20 8041 | [17] | Peng X Y, Xu L and Asundi A 2005 IEEE J. Quantum Electron. 41 53 | [18] | Bai F, Wang Q P, Liu Z J, Zhang X Y, Wan X B, Lan W X, Jin G F, Tao X T and Sun Y X 2012 Opt. Express 20 807 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|