GENERAL |
|
|
|
|
Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States |
Ya-Hui Gan1,2, Yang Wang1,2**, Wan-Su Bao1,2**, Ru-Shi He1,2, Chun Zhou1,2, Mu-Sheng Jiang1,2 |
1Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001 2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
Ya-Hui Gan, Yang Wang, Wan-Su Bao et al 2019 Chin. Phys. Lett. 36 040301 |
|
|
Abstract High-dimensional quantum states key distribution (HD-QKD) can enable more than one bit per photon and tolerate more noise. Recently, a practical HD-QKD system based on time-phase states has provided a secret key at Mbps over metropolitan distances. For the purposes of further improving the secret key rate of a practical HD-QKD system, we make two main contributions in this work. Firstly, we present an improved parameter estimation for this system in the finite-key scenario based on the Chernoff bound and the improved Chernoff bound. Secondly, we analyze how the dimension $d$ affects the performance of the practical HD-QKD system. We present numerical simulations about the secret key rate of the practical HD-QKD system based on different parameter estimation methods. It is found that using the improved Chernoff bound can improve the secret key rate and maximum channel loss of the practical HD-QKD system. In addition, a mixture of the 4-level and 8-level practical HD-QKD system can provide better performance in terms of the key generation rate over metropolitan distances.
|
|
Received: 19 December 2018
Published: 23 March 2019
|
|
PACS: |
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant No 2013CB338002, and the National Natural Science Foundation of China under Grant Nos 61505261, 61675235, 61605248 and 11304397. |
|
|
[1] | Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Comput. Syst. Signal Process. Bangalore India IEEE p 175 | [2] | Ekert A K 1991 Phys. Rev. Lett. 67 661 | [3] | Tittel W, Brendel J, Zbinden H and Gisin N 2000 Phys. Rev. Lett. 84 4737 | [4] | Bechmann-Pasquinucci H and Tittel W 2000 Phys. Rev. A 61 062308 | [5] | Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902 | [6] | Ali-Khan I, Broadbent C J and Howell J C 2007 Phys. Rev. Lett. 98 060503 | [7] | Mohammad M, Omar S M L, Malcolm N O S, Brandon R, Mehul M, Martin P J L, Miles J P, Daniel J G and Robert W B 2015 New J. Phys. 17 033033 | [8] | Mower J, Zhang Z, Desjardins P, Lee C, Shapiro J H and Englund D 2013 Phys. Rev. A 87 062322 | [9] | Wang Y, Bao W S, Bao H Z, Zhou C, Jiang M S and Li H W 2017 Phys. Lett. A 381 1393 | [10] | Bao H Z, Bao W S, Wang Y, Chen R K, Ma H X, Zhou C and Li H W 2017 Chin. Phys. B 26 050302 | [11] | Zhang Z, Mower J, Englund D, Wong F N C and Shapiro J H 2014 Phys. Rev. Lett. 112 120506 | [12] | Bunandar D, Zhang Z, Shapiro J H and Englund D 2015 Phys. Rev. A 91 022336 | [13] | Bao H Z, Bao W S, Wang Y, Zhou C and Chen R K 2016 J. Phys. A 49 205301 | [14] | Niu M Y, Xu F, Shapiro J H and Furrer F 2016 Phys. Rev. A 94 052323 | [15] | Lee C, Zhang Z, Steinbrecher G R, Zhou H, Mower J, Zhong T, Wang L, Hu X, Horansky R D, Verma V B, Lita A E, Mirin R P, Marsili F, Shaw M D, Nam S W, Wornell G W, Wong F N C, Shapiro J H and Englund D 2014 Phys. Rev. A 90 062331 | [16] | Lee C, Bunandar D, Zhang Z, Steinbrecher G R, Dixon P B, Wong F N C, Shapiro J H, Hamilton S A and Englund D 2016 arXiv:1611.01139v1 | [17] | Zhong T, Zhou H, Horansky R D, Lee C, Verma V B, Lita A E, Restelli A, Bienfang J C, Mirin R P, Gerrits T, Nam S W, Marsili F, Shaw M D, Zhang Z, Wang L, Englund D, Wornell G W, Shapiro J H and Wong F N C 2015 New J. Phys. 17 022002 | [18] | Islam N T, Lim C C W, Cahall C, Kim J S and Gauthier D J 2017 Sci. Adv. 3 e1701491 | [19] | Islam N T, Lim C C W, Cahall C, Kim J S and Gauthier D J 2018 Phys. Rev. A 97 042347 | [20] | Brassard G, Lutkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330 | [21] | Hwang W Y 2003 Phys. Rev. Lett. 91 057901 | [22] | Hoeffding W 1963 J. Am. Stat. Assoc. 58 13 | [23] | Chernoff H 1952 Ann. Math. Stat. 23 493 | [24] | Zhang Z, Zhao Q, Razavi M and Ma X F 2017 Phys. Rev. A 95 012333 | [25] | Brougham T, Barnett S M, McCusker K T, Kwiat P G and Gauthier D J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 104010 | [26] | Muller-Quade J and Renner R 2009 New J. Phys. 11 085006 | [27] | Tomamichel M and Hayashi M 2013 IEEE Trans. Inf. Theory 59 7693 | [28] | Islam N T, Cahall C, Aragoneses A, Lezama A, Kim J and Gauthier D J 2017 Phys. Rev. Appl. 7 044010 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|