Chin. Phys. Lett.  2019, Vol. 36 Issue (4): 040301    DOI: 10.1088/0256-307X/36/4/040301
GENERAL |
Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States
Ya-Hui Gan1,2, Yang Wang1,2**, Wan-Su Bao1,2**, Ru-Shi He1,2, Chun Zhou1,2, Mu-Sheng Jiang1,2
1Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Ya-Hui Gan, Yang Wang, Wan-Su Bao et al  2019 Chin. Phys. Lett. 36 040301
Download: PDF(523KB)   PDF(mobile)(516KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-dimensional quantum states key distribution (HD-QKD) can enable more than one bit per photon and tolerate more noise. Recently, a practical HD-QKD system based on time-phase states has provided a secret key at Mbps over metropolitan distances. For the purposes of further improving the secret key rate of a practical HD-QKD system, we make two main contributions in this work. Firstly, we present an improved parameter estimation for this system in the finite-key scenario based on the Chernoff bound and the improved Chernoff bound. Secondly, we analyze how the dimension $d$ affects the performance of the practical HD-QKD system. We present numerical simulations about the secret key rate of the practical HD-QKD system based on different parameter estimation methods. It is found that using the improved Chernoff bound can improve the secret key rate and maximum channel loss of the practical HD-QKD system. In addition, a mixture of the 4-level and 8-level practical HD-QKD system can provide better performance in terms of the key generation rate over metropolitan distances.
Received: 19 December 2018      Published: 23 March 2019
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Supported by the National Basic Research Program of China under Grant No 2013CB338002, and the National Natural Science Foundation of China under Grant Nos 61505261, 61675235, 61605248 and 11304397.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/4/040301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I4/040301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ya-Hui Gan
Yang Wang
Wan-Su Bao
Ru-Shi He
Chun Zhou
Mu-Sheng Jiang
[1]Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Comput. Syst. Signal Process. Bangalore India IEEE p 175
[2]Ekert A K 1991 Phys. Rev. Lett. 67 661
[3]Tittel W, Brendel J, Zbinden H and Gisin N 2000 Phys. Rev. Lett. 84 4737
[4]Bechmann-Pasquinucci H and Tittel W 2000 Phys. Rev. A 61 062308
[5]Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
[6]Ali-Khan I, Broadbent C J and Howell J C 2007 Phys. Rev. Lett. 98 060503
[7]Mohammad M, Omar S M L, Malcolm N O S, Brandon R, Mehul M, Martin P J L, Miles J P, Daniel J G and Robert W B 2015 New J. Phys. 17 033033
[8]Mower J, Zhang Z, Desjardins P, Lee C, Shapiro J H and Englund D 2013 Phys. Rev. A 87 062322
[9]Wang Y, Bao W S, Bao H Z, Zhou C, Jiang M S and Li H W 2017 Phys. Lett. A 381 1393
[10]Bao H Z, Bao W S, Wang Y, Chen R K, Ma H X, Zhou C and Li H W 2017 Chin. Phys. B 26 050302
[11]Zhang Z, Mower J, Englund D, Wong F N C and Shapiro J H 2014 Phys. Rev. Lett. 112 120506
[12]Bunandar D, Zhang Z, Shapiro J H and Englund D 2015 Phys. Rev. A 91 022336
[13]Bao H Z, Bao W S, Wang Y, Zhou C and Chen R K 2016 J. Phys. A 49 205301
[14]Niu M Y, Xu F, Shapiro J H and Furrer F 2016 Phys. Rev. A 94 052323
[15]Lee C, Zhang Z, Steinbrecher G R, Zhou H, Mower J, Zhong T, Wang L, Hu X, Horansky R D, Verma V B, Lita A E, Mirin R P, Marsili F, Shaw M D, Nam S W, Wornell G W, Wong F N C, Shapiro J H and Englund D 2014 Phys. Rev. A 90 062331
[16]Lee C, Bunandar D, Zhang Z, Steinbrecher G R, Dixon P B, Wong F N C, Shapiro J H, Hamilton S A and Englund D 2016 arXiv:1611.01139v1
[17]Zhong T, Zhou H, Horansky R D, Lee C, Verma V B, Lita A E, Restelli A, Bienfang J C, Mirin R P, Gerrits T, Nam S W, Marsili F, Shaw M D, Zhang Z, Wang L, Englund D, Wornell G W, Shapiro J H and Wong F N C 2015 New J. Phys. 17 022002
[18]Islam N T, Lim C C W, Cahall C, Kim J S and Gauthier D J 2017 Sci. Adv. 3 e1701491
[19]Islam N T, Lim C C W, Cahall C, Kim J S and Gauthier D J 2018 Phys. Rev. A 97 042347
[20]Brassard G, Lutkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[21]Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[22]Hoeffding W 1963 J. Am. Stat. Assoc. 58 13
[23]Chernoff H 1952 Ann. Math. Stat. 23 493
[24]Zhang Z, Zhao Q, Razavi M and Ma X F 2017 Phys. Rev. A 95 012333
[25]Brougham T, Barnett S M, McCusker K T, Kwiat P G and Gauthier D J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 104010
[26]Muller-Quade J and Renner R 2009 New J. Phys. 11 085006
[27]Tomamichel M and Hayashi M 2013 IEEE Trans. Inf. Theory 59 7693
[28]Islam N T, Cahall C, Aragoneses A, Lezama A, Kim J and Gauthier D J 2017 Phys. Rev. Appl. 7 044010
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 040301
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 040301
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 040301
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 040301
[8] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 040301
[9] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 040301
[10] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 040301
[11] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 040301
[12] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 040301
[13] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 040301
[14] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 040301
[15] Min Xiao, Yun-Ru Cao, Xiu-Li Song. Efficient and Secure Authenticated Quantum Dialogue Protocols over Collective-Noise Channels[J]. Chin. Phys. Lett., 2017, 34(3): 040301
Viewed
Full text


Abstract