Chin. Phys. Lett.  2019, Vol. 36 Issue (3): 034701    DOI: 10.1088/0256-307X/36/3/034701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Constrained Brownian Motion of a Single Ellipsoid in a Narrow Channel
Han-Hai Li1,2, Zhong-Yu Zheng1,2, Yu-Ren Wang1,2**
1National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
2School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Han-Hai Li, Zhong-Yu Zheng, Yu-Ren Wang 2019 Chin. Phys. Lett. 36 034701
Download: PDF(570KB)   PDF(mobile)(570KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the Brownian motion of a single ellipsoidal particle diffusing in a narrow channel by video-microscopy measurement. The experiments allow us to obtain the trajectories of ellipsoids and measure the diffusion coefficients. It is found that the channel constraints lead to suppression of the particle motion, especially the perpendicular motion to the channel, and the long axis of the particle tends to be parallel to the channel. A stable stratification phenomenon is observed, which is rarely discussed in studies of spherical particles. We also derive an approximate solution of theoretical prediction with the method of reflections, and obtain numerical simulation results using finite element software. They are proven to be effective by comparing them with the experimental results. All of these indicate that the aspect ratio and size of ellipsoid, the width of channel, and the transverse position distinctly affect the Brownian motion of ellipsoids.
Received: 07 November 2018      Published: 24 February 2019
PACS:  47.60.Dx (Flows in ducts and channels)  
  47.57.J- (Colloidal systems)  
  47.60.-i (Flow phenomena in quasi-one-dimensional systems)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos U1738118 and 11472275, the Strategic Priority Research Program (A) on Space Science of the Chinese Academy of Sciences under Grant Nos XDA04020202 and XDA04020406, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB22040301.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/3/034701       OR      https://cpl.iphy.ac.cn/Y2019/V36/I3/034701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Han-Hai Li
Zhong-Yu Zheng
Yu-Ren Wang
[1]Wang Y, Austin R H and Cox E C 2006 Phys. Rev. Lett. 97 048302
[2]Pagès J M, James C E and Winterhalter M 2008 Nat. Rev. Microbiol. 6 893
[3]Thorsen T, Roberts R W, Arnold F H and Quake S R 2001 Phys. Rev. Lett. 86 4163
[4]Happel J and Brenner H 1983 Low Reynolds Number Hydrodynamics (Dordrecht: Kluwer Academic)
[5]Lin B, Yu J and Rice S A 2000 Phys. Rev. E 62 3909
[6]Han Y, Alsayed A, Nobili M and Yodh A G 2009 Phys. Rev. E 80 011403
[7]Zhang Z, Yunker P J, Habdas P and Yodh A G 2011 Phys. Rev. Lett. 107 208303
[8]Han Y, Alsayed A M, Nobili M, Zhang J and Yodh A G 2006 Science 314 626
[9]Sokolov A, Aranson I S, Kessler J O and Goldstein R E 2007 Phys. Rev. Lett. 98 158102
[10]Duggal R and Pasquali M 2006 Phys. Rev. Lett. 96 246104
[11]Cobb P D and Butler J E 2005 J. Chem. Phys. 123 054908
[12]Somasi M, Khomami B, Woo N J, Hur J S and Shaqfeh S G 2002 J. Non-Newtonian Fluid Mech. 108 227
[13]Zheng Z and Han Y 2010 J. Chem. Phys. 133 124509
[14]Lin B, Cui B, Lee J H and Yu J 2002 Europhys. Lett. 57 724
[15]Brenner H 1962 J. Fluid. Mech. 12 35
[16]Koenig S H 1975 Biopolymers 14 2421
[17]Cui B X, Diamant H and Lin B H 2002 Phys. Rev. Lett. 89 188302
Related articles from Frontiers Journals
[1] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 034701
[2] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 034701
Viewed
Full text


Abstract