Chin. Phys. Lett.  2019, Vol. 36 Issue (3): 034204    DOI: 10.1088/0256-307X/36/3/034204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter
Ji-Bing Yuan1,3, Zhao-Hui Peng2, Shi-Qing Tang1,3**, Deng-Yu Zhang1
1College of Physics and Electronic Engineering, and Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang Normal University, Hengyang 421008
2Institute of Modern Physics and Department of Physics, Hunan University of Science and Technology, Xiangtan 411201
3Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081
Cite this article:   
Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang et al  2019 Chin. Phys. Lett. 36 034204
Download: PDF(612KB)   PDF(mobile)(606KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically investigate the transparency effect with a hybrid system composed of a photonic molecule and dipole emitter. It is shown that the transparency effect incorporates both the coupled resonator-induced transparency (CRIT) effect and the dipole-induced transparency (DIT) effect. It is found that the superposed transparency windows are consistently narrower than the CRIT and DIT transparency windows. Benefiting from the superposed transparency effect, the photonic Faraday rotation effect could be realized in the photonic molecule system, which is useful for entanglement generation and quantum information processing.
Received: 01 September 2018      Published: 24 February 2019
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.-p (Quantum optics)  
  03.67.-a (Quantum information)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11547258, 11647129 and 11405052, the Hunan Provincial Natural Science Foundation of China under Grant Nos 2018JJ3006, 2017JJ3005 and 2016JJ3006, the Scientific Research Fund of Hunan Provincial Education Department under Grant Nos 16B036 and 15A028, the Science and Technology Plan Project of Hunan Province under Grant No 2016TP1020, the Open Fund Project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang Normal University under Grant No IIPA18K08, the Open Fund Project of the Hunan Provincial Applied Basic Research Base of Optoelectronic Information Technology under Grant No GD18K04, and the Open Fund Project of the Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of the Ministry of Education under Grant Nos QSQC1704 and QSQC1706.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/3/034204       OR      https://cpl.iphy.ac.cn/Y2019/V36/I3/034204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ji-Bing Yuan
Zhao-Hui Peng
Shi-Qing Tang
Deng-Yu Zhang
[1]Bayer M et al 1998 Phys. Rev. Lett. 81 2582
[2]Rakovich Y P and Donegan J F 2009 Laser Photon. Rev. 4 179
[3]Zhao Y et al 2015 Opt. Express 23 9211
[4]Wang K et al 2017 Adv. Opt. Mater. 5 1600744
[5]Boriskina S V and Negro L D 2010 Opt. Lett. 35 2496
[6]Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[7]Harris S E, Field J E and Imamoglu A 1990 Phys. Rev. Lett. 64 1107
[8]Smith D D et al 2004 Phys. Rev. A 69 063804
[9]Feng L, El-Ganainy R and Ge L 2017 Nat. Photon. 11 752
[10]Peng B et al 2014 Nat. Phys. 10 394
[11]Chang L et al 2014 Nat. Photon. 8 524
[12]Peng B et al 2014 Science 346 328
[13]Shen J T and Fan S 2005 Phys. Rev. Lett. 95 213001
[14]Zhou L et al 2008 Phys. Rev. Lett. 101 100501
[15]Waks E and Vuckovic J 2006 Phys. Rev. Lett. 96 153601
[16]Liu Y C et al 2011 Phys. Rev. A 84 011805(R)
[17]Guo Y et al 2008 Phys. Rev. A 78 013833
[18]Wang G Y, Liu Q and Deng F G 2016 Phys. Rev. A 94 032319
[19]Leuenberger M N, Flatte M E and Awschalom D D 2005 Phys. Rev. Lett. 94 107401
[20]Hu C Y et al 2008 Phys. Rev. B 78 085307
[21]Peng Z H et al 2012 Phys. Rev. A 86 034305
[22]Sun S et al 2016 Nat. Nanotechnol. 11 539
[23]Peng Z H et al 2015 Quantum Inf. Process. 14 2833
[24]Cao Q T et al 2017 Phys. Rev. Lett. 118 033901
[25]Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett. 68 1132
[26]Walls D F and Milburn G J 2008 Quantum Optics 2nd edn (New York: Springer)
[27]Purcell E M, Torrey H C and Pound R V 1946 Phys. Rev. 69 37
[28]An J H, Feng M and Oh C H 2009 Phys. Rev. A 79 032303
[29]Vahala K J 2003 Nature 424 839
[30]Zhang Y et al 2017 J. Alloys Compd. 724 169
Related articles from Frontiers Journals
[1] Yun-Tong Yang and Hong-Gang Luo. Characterizing Superradiant Phase of the Quantum Rabi Model[J]. Chin. Phys. Lett., 2023, 40(2): 034204
[2] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 034204
[3] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 034204
[4] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 034204
[5] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 034204
[6] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 034204
[7] Wang-Jun Lu, Zhen Li, Le-Man Kuang. Nonlinear Dicke Quantum Phase Transition and Its Quantum Witness in a Cavity-Bose–Einstein-Condensate System[J]. Chin. Phys. Lett., 2018, 35(11): 034204
[8] Kun Zhou, Jin-Ming Cui, Yun-Feng Huang, Zhao Wang, Zhong-Hua Qian, Qi-Ming Wu, Jian Wang, Ran He, Wei-Min Lv, Chang-Kang Hu, Yong-Jian Han, Chuan-Feng Li, Guang-Can Guo. An Ultraviolet Fiber Fabry–Pérot Cavity for Florescence Collection of Trapped Ions[J]. Chin. Phys. Lett., 2017, 34(1): 034204
[9] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 034204
[10] Yong Cheng, Zheng Tan, Jin Wang, Yi-Fu Zhu, Ming-Sheng Zhan. Observation of Fano-Type Interference in a Coupled Cavity-Atom System[J]. Chin. Phys. Lett., 2016, 33(01): 034204
[11] LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai. Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap[J]. Chin. Phys. Lett., 2015, 32(10): 034204
[12] WANG Hai-Yan, SU Dan, YANG Shuang, DOU Xiu-Ming, ZHU Hai-Jun, JIANG De-Sheng, NI Hai-Qiao, NIU Zhi-Chuan, ZHAO Cui-Lan, SUN Bao-Quan. Au Microdisk-Size Dependence of Quantum Dot Emission from the Hybrid Metal-Distributed Bragg Reflector Structures Employed for Single Photon Sources[J]. Chin. Phys. Lett., 2015, 32(10): 034204
[13] GUO Yan-Qing, DENG Yao, PEI Pei, TONG Dian-Min, WANG Dian-Fu, MI Dong. Quantum State Transfer among Three Ring-Connected Atoms[J]. Chin. Phys. Lett., 2015, 32(06): 034204
[14] TANG Shi-Qing, YUAN Ji-Bing, WANG Xin-Wen, KUANG Le-Man. Entanglement-Enhanced Two-Photon Delocalization in a Coupled-Cavity Array[J]. Chin. Phys. Lett., 2015, 32(4): 034204
[15] WU Huai-Zhi, YANG Zhen-Biao. Distributed Qutrit–Qutrit Entanglement through Laser-Driven Resonant Interaction[J]. Chin. Phys. Lett., 2014, 31(2): 034204
Viewed
Full text


Abstract