Chin. Phys. Lett.  2019, Vol. 36 Issue (3): 034203    DOI: 10.1088/0256-307X/36/3/034203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Zero Refractive Index Properties of Two-Dimensional Photonic Crystals with Dirac Cones
Guo-Guo Wei, Chong Miao, Hao-Chong Huang, Hua Gao**
School of Science, China University of Geosciences, Beijing 100083
Cite this article:   
Guo-Guo Wei, Chong Miao, Hao-Chong Huang et al  2019 Chin. Phys. Lett. 36 034203
Download: PDF(1496KB)   PDF(mobile)(1490KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The zero refractive index properties of two-dimensional photonic crystals (PCs) are studied theoretically. Three necessary conditions for PCs to mimic the zero index materials (ZIMs) are obtained. In addition, through a comparative study of the properties for two representative PC structures with different types of Dirac cones, we find that the PC with a Dirac-like cone which meets the three necessary conditions does not behave as a ZIM in some cases. Further analysis shows that its non-zero index properties originate from the flat dispersion band. These findings clarify the fundamental physical issue of which type of Dirac cone PC can mimic a real ZIM.
Received: 19 November 2018      Published: 24 February 2019
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.70.Qs (Photonic bandgap materials)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11504336 and 61805214, and the Fundamental Research Funds for the Central Universities under Grant No 265201430.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/3/034203       OR      https://cpl.iphy.ac.cn/Y2019/V36/I3/034203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guo-Guo Wei
Chong Miao
Hao-Chong Huang
Hua Gao
[1]Nguyen V C, Chen L and Halterman K 2010 Phys. Rev. Lett. 105 233908
[2]Enoch S, Tayeb G, Sabouroux P, Guerin N and Vincent P 2002 Phys. Rev. Lett. 89 213902
[3]Silveirinha M and Engheta N 2006 Phys. Rev. Lett. 97 157403
[4]Hao J M, Yan W and Qiu M 2010 Appl. Phys. Lett. 96 101109
[5]Zhai T R, Shi J W, Chen S J and Liu D H 2011 Appl. Phys. Express 4 074301
[6]Zhai T R, Shi J W, Chen S J, Liu D H and Zhang X D 2011 Opt. Lett. 36 2689
[7]Fu Y, Xu L, Hang Z H and Chen H 2014 Appl. Phys. Lett. 104 193509
[8]Zhu W R, Rukhlenko I D and Premaratne M 2012 Phys. Rev. Lett. 108 213903
[9]Wang N, Chen H J, Lu W L, Liu S Y and Lin Z F 2013 Opt. Express 21 23712
[10]Yu X N, Chen H J, Lin H X, Zhou J L, Yu J J, Qian C X and Liu S Y 2014 Opt. Lett. 39 4643
[11]Lin H X, Yu X N and Liu S Y 2015 Acta Phys. Sin. 64 034203
[12]Kinsey N, Devault C, Kim J, Ferrera M, Shalaev V M and Boltasseva A 2015 Optica 2 616
[13]Ou J Y, So J K, Adamo G, Sulaev A and Wang L 2014 Nat. Commun. 5 5139
[14]Huang X, Lai Y, Hang Z H, Zheng H and Chan C T 2011 Nat. Mater. 10 582
[15]Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P and Valentine J 2013 Nat. Photon. 7 791
[16]Li Y, Kita S, Muñoz P, Reshef O and Vulis D I 2015 Nat. Photon. 9 738
[17]Mei J, Wu Y, Chan C T and Zhang Z Q 2012 Phys. Rev. B 86 035141
[18]Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H and Chen Y F 2015 Sci. Rep. 4 4613
[19]Ashraf M W and Faryad M 2016 J. Opt. Soc. Am. B 33 1008
[20]Fang K, Zhang Y, Li F, Jiang H and Li Y 2012 Opt. Lett. 37 4654
[21]Dong J W, Chang M L, Huang X Q, Hang Z H, Zhong Z C, Chen W J, Huang Z Y and Chan C T 2015 Phys. Rev. Lett. 114 163901
[22]Boriskina S V 2015 Nat. Photon. 9 422
[23]D'Aguanno G, Mattiucci N, Conti C and Bloemer M J 2013 Phys. Rev. B 87 085135
[24]Li Y and Mei J 2015 Opt. Express 23 12089
[25]Sepkhanov R A, Bazaliy Y B and Beenakker C W J 2007 Phys. Rev. A 75 063813
[26]Gao H, Ouyang M, Wang Y, Shen Y, Zhou J and Liu D H 2007 Optik 118 452
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 034203
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 034203
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 034203
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 034203
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 034203
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 034203
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 034203
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 034203
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 034203
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 034203
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 034203
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 034203
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 034203
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 034203
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 034203
Viewed
Full text


Abstract