Chin. Phys. Lett.  2019, Vol. 36 Issue (3): 030201    DOI: 10.1088/0256-307X/36/3/030201
GENERAL |
Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions
Yong-Shuai Zhang1, Jing-Song He2**
1School of Science, Zhejiang University of Science and Technology, Hangzhou 310023
2Institute for Advanced Study, Shenzhen University, Shenzhen 518060
Cite this article:   
Yong-Shuai Zhang, Jing-Song He 2019 Chin. Phys. Lett. 36 030201
Download: PDF(669KB)   PDF(mobile)(671KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the asymmetric decompositions of bound-state (BS) soliton solutions to the nonlinear Schrödinger equation. Assuming that the BS solitons are split into multiple solitons with different displacements, we obtain more accurate decompositions compared to the symmetric decompositions. Through graphical techniques, the asymmetric decompositions are shown to overlap very well with the real trajectories of the BS soliton solutions.
Received: 02 December 2018      Published: 24 February 2019
PACS:  02.30.Ik (Integrable systems)  
  02.30.Zz (Inverse problems)  
  05.45.Yv (Solitons)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11671219 and 11801510.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/3/030201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I3/030201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yong-Shuai Zhang
Jing-Song He
[1]Novikvo S, Manakov S, Pitaevskii L and Zakharov V 1984 Theory of Solitons: The Inverse Scattering Method (New York: Consultants Bureau)
[2]Ablowitz M J, Prinari B and Trubatch A D 2004 Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge: Cambridge University Press)
[3]Faddeev L and Takhtajan L 2007 Hamiltonian Methods in the Theory of Solitons (Berlin: Springer)
[4]Calogero F and Degasperis A 2011 Spectral Transform and Solitons (New York: North-Holland)
[5]Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[6]Zakharov V E and Shabat A B 1972 Sov. Phys. JETP 34 62
[7]Olmedilla E 1987 Physica D 25 330
[8]Schiebold C 2017 Nonlinearity 30 2930
[9]Ablowitz M J, Kaup D J, Newell A and Segur H 1973 Phys. Rev. Lett. 30 1262
[10]Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Stud. Appl. Math. 53 249
[11]Gardner C S, Greene J M, Kruskal M D and Miura R M 1974 Commun. Pure Appl. Math. 27 97
[12]Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[13]Gu C H, Hu H S and Zhou Z X 2006 Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry (Berlin: Springer)
[14]Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[15]Wadati M and Ohkuma K 1982 J. Phys. Soc. Jpn. 51 2029
[16]Tsuru H and Wadati M 1984 J. Phys. Soc. Jpn. 53 2908
[17]Xing Q X, Wu Z W, Mihalache D and He J S 2017 Nonlinear Dyn. 89 2299
[18]Wang G H, Zhang Y S and He J S 2018 Commun. Theor. Phys. 69 227
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 030201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 030201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 030201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 030201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 030201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 030201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 030201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 030201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 030201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 030201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 030201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 030201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 030201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 030201
[15] Ya-Hong Hu, Jun-Chao Chen. Solutions to Nonlocal Integrable Discrete Nonlinear Schr?dinger Equations via Reduction[J]. Chin. Phys. Lett., 2018, 35(11): 030201
Viewed
Full text


Abstract