Chin. Phys. Lett.  2019, Vol. 36 Issue (12): 124202    DOI: 10.1088/0256-307X/36/12/124202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies
Zong-Cheng Xu1,2**, Liang Wu2, Ya-Ting Zhang2, De-Gang Xu2, Jian-Quan Yao2
1Department of Physics, Tianjin University Renai College, Tianjin 301636
2Institute of Laser and Opto-electronics and Key Laboratory of Opto-electronics Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072
Cite this article:   
Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang et al  2019 Chin. Phys. Lett. 36 124202
Download: PDF(904KB)   PDF(mobile)(899KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a design and numerical study of an optically blueshift and redshift switchable metamaterial (MM) absorber in the terahertz regime. The MM absorber comprises a periodic array of metallic split-ring resonators (SRRs) with semiconductor silicon embedded in the gaps of MM resonators. The absorptive frequencies of the MM can be shifted by applying an external pump power. The simulation results show that, for photoconductivity of silicon ranging between 1 S/m and 4000 S/m, the resonance peak of the absorption spectra shifts to higher frequencies, from 0.67 THz to 1.63 THz, with a resonance tuning range of 59%. As the conductivity of silicon increases, the resonance frequencies of the MM absorber are continuously tuned from 1.60 THz to 1.16 THz, a redshift tuning range of 28%. As the conductivity increases above 30000 S/m, the resonance frequencies tend to be stable while the absorption peak has a merely tiny variation. The optical-tuned absorber has potential applications as a terahertz modulator or switch.
Received: 19 July 2019      Published: 25 November 2019
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Supported by the National Key Research and Development Program of China under Grant No. 2017YFA0700202.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/12/124202       OR      https://cpl.iphy.ac.cn/Y2019/V36/I12/124202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zong-Cheng Xu
Liang Wu
Ya-Ting Zhang
De-Gang Xu
Jian-Quan Yao
[1]Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
[2]Chen H T, O'Hara J F, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B and Padilla W J 2008 Nat. Photon. 2 295
[3]Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181
[4]Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D and Jepsen P U 2012 Opt. Express 20 635
[5]Ferguson B and Zhang X C 2002 Nat. Mater. 1 26
[6]Tonouchi M 2007 Nat. Photon. 1 97
[7]O'Hara J F et al 2008 Opt. Express 16 1786
[8]Chiang Y J, Yang C S, Yang Y H, Pan C L and Yen T J 2011 Appl. Phys. Lett. 99 191909
[9]Hao J, Wang J, Liu X, Padilla W J, Zhou L and Qiu M 2010 Appl. Phys. Lett. 96 251104
[10]Ma Y, Chen Q, Grant J, Saha S C, Khalid A and Smith D R 2011 Opt. Lett. 36 945
[11]Shrekenhamer D, Xu W, Venkatesh S, Schurig D, Sonkusale S and Padilla W J 2012 Phys. Rev. Lett. 109 177401
[12]Landy N I, Sajuyibge S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[13]Shen X P, Cui T J, Zhao J, Ma H F, Jiang W X and L I H 2011 Opt. Express 19 9401
[14]Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111
[15]Xiong H, Hong J S, Luo C M and Zhong L L 2013 J. Appl. Phys. 114 064109
[16]Shen Z Y, Huang X J, Yang H L, Xiang T Y, Wang C W, Yu Z T and Wu J 2018 J. Appl. Phys. 123 225106
[17]Xu Z C, Gao R M, Ding C F, Zhang Y T and Yao J Q 2014 Chin. Phys. Lett. 31 054205
[18]Li S X, Nugraha P S, Su X Q, Chen X Y, Yang Q L, Unferdorben M, Kovács F, Kunsági-Máté S, Liu M, Zhang X Q, Ouyang C M, Li Y F, Fülöp J A, Han J G and Zhang W L 2019 Opt. Express 27 2317
[19]Li Y J, Wang C W, Shen Z Y, Wu D, Wu N and Yang H L 2019 Phys. Scr. 94 035703
[20]Li Y J, Huang X J, Huang S Q, Zhou Y F, Wu J, Wang C W, Shen Z Y and Yang H L 2019 Mater. Res. Express 6 085806
[21]Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X and Min B 2012 Nat. Mater. 11 936
[22]Yan R, Sensale-Rodriguez B, Liu L, Jena D and Xing H G 2012 Opt. Express 20 28664
[23]Mousavi S H, Kholmanov I, Alici K B, Purtseladze D, Arju N, Tatar K, Fozdar D Y, Suk J W, Hao Y, Khanikaev A B, Ruoff R S and Shvets G 2013 Nano Lett. 13 1111
[24]Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257
[25]Driscoll T, Kim H T, Chae B G, Kim B G, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra M D and Basov D N 2009 Science 325 1518
[26]Zhang Z, Tian Z, Chang C, Wang X G, Zhang X Q, Quyang C M, Gu J Q and Zhang W L 2018 Nanotechnology and Precision Engineering 1 123
[27]Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K and Liu Y L 2010 Appl. Phys. Lett. 97 021111
[28]Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y and Zhang P X 2012 J. Phys. D 45 235106
[29]Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N and Soukoulis C M 2009 Phys. Rev. B 79 161102
[30]Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Iqbal S, Wang X, Tian Z, Tang W X, Cheng Q, Han J G, Zhang W L and Cui T J 2016 Adv. Opt. Mater. 4 1965
[31]Yan X, Liang L J, Zhang Z, Yang M S, Wei D Q, Wang M, Li Y P, Lv Y Y, Zhang X F, Ding X and Yao J Q 2018 Acta Phys. Sin. 67 118102
[32]Xu Z C, Gao R M, Ding C F, Wu L, Zhang Y T and Yao J Q 2015 Opt. Mater. 42 148
[33]Xu Z C, Gao R M, Ding C F, Wu L, Zhang Y T and Yao J Q 2015 Opt. Commun. 344 125
[34]Hu T, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 124202
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 124202
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 124202
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 124202
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 124202
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 124202
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 124202
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 124202
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 124202
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 124202
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 124202
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 124202
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 124202
[14] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 124202
[15] Ju-Geng Li, Sen-Miao Yang, Xin Chen, Nai-Feng Zhuang, Qi-Biao Zhu, An-Hua Wu, Xian Lin, Guo-Hong Ma, Zuan-Ming Jin, Jian-Quan Yao. Temperature-Dependent Dielectric Characterization of Magneto-Optical Tb$_{3}$Sc$_{2}$Al$_{3}$O$_{12}$ Crystal Investigated by Terahertz Time-Domain Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(4): 124202
Viewed
Full text


Abstract