FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies |
Zong-Cheng Xu1,2**, Liang Wu2, Ya-Ting Zhang2, De-Gang Xu2, Jian-Quan Yao2 |
1Department of Physics, Tianjin University Renai College, Tianjin 301636 2Institute of Laser and Opto-electronics and Key Laboratory of Opto-electronics Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072
|
|
Cite this article: |
Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang et al 2019 Chin. Phys. Lett. 36 124202 |
|
|
Abstract We propose a design and numerical study of an optically blueshift and redshift switchable metamaterial (MM) absorber in the terahertz regime. The MM absorber comprises a periodic array of metallic split-ring resonators (SRRs) with semiconductor silicon embedded in the gaps of MM resonators. The absorptive frequencies of the MM can be shifted by applying an external pump power. The simulation results show that, for photoconductivity of silicon ranging between 1 S/m and 4000 S/m, the resonance peak of the absorption spectra shifts to higher frequencies, from 0.67 THz to 1.63 THz, with a resonance tuning range of 59%. As the conductivity of silicon increases, the resonance frequencies of the MM absorber are continuously tuned from 1.60 THz to 1.16 THz, a redshift tuning range of 28%. As the conductivity increases above 30000 S/m, the resonance frequencies tend to be stable while the absorption peak has a merely tiny variation. The optical-tuned absorber has potential applications as a terahertz modulator or switch.
|
|
Received: 19 July 2019
Published: 25 November 2019
|
|
PACS: |
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No. 2017YFA0700202. |
|
|
[1] | Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597 | [2] | Chen H T, O'Hara J F, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B and Padilla W J 2008 Nat. Photon. 2 295 | [3] | Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181 | [4] | Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D and Jepsen P U 2012 Opt. Express 20 635 | [5] | Ferguson B and Zhang X C 2002 Nat. Mater. 1 26 | [6] | Tonouchi M 2007 Nat. Photon. 1 97 | [7] | O'Hara J F et al 2008 Opt. Express 16 1786 | [8] | Chiang Y J, Yang C S, Yang Y H, Pan C L and Yen T J 2011 Appl. Phys. Lett. 99 191909 | [9] | Hao J, Wang J, Liu X, Padilla W J, Zhou L and Qiu M 2010 Appl. Phys. Lett. 96 251104 | [10] | Ma Y, Chen Q, Grant J, Saha S C, Khalid A and Smith D R 2011 Opt. Lett. 36 945 | [11] | Shrekenhamer D, Xu W, Venkatesh S, Schurig D, Sonkusale S and Padilla W J 2012 Phys. Rev. Lett. 109 177401 | [12] | Landy N I, Sajuyibge S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402 | [13] | Shen X P, Cui T J, Zhao J, Ma H F, Jiang W X and L I H 2011 Opt. Express 19 9401 | [14] | Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111 | [15] | Xiong H, Hong J S, Luo C M and Zhong L L 2013 J. Appl. Phys. 114 064109 | [16] | Shen Z Y, Huang X J, Yang H L, Xiang T Y, Wang C W, Yu Z T and Wu J 2018 J. Appl. Phys. 123 225106 | [17] | Xu Z C, Gao R M, Ding C F, Zhang Y T and Yao J Q 2014 Chin. Phys. Lett. 31 054205 | [18] | Li S X, Nugraha P S, Su X Q, Chen X Y, Yang Q L, Unferdorben M, Kovács F, Kunsági-Máté S, Liu M, Zhang X Q, Ouyang C M, Li Y F, Fülöp J A, Han J G and Zhang W L 2019 Opt. Express 27 2317 | [19] | Li Y J, Wang C W, Shen Z Y, Wu D, Wu N and Yang H L 2019 Phys. Scr. 94 035703 | [20] | Li Y J, Huang X J, Huang S Q, Zhou Y F, Wu J, Wang C W, Shen Z Y and Yang H L 2019 Mater. Res. Express 6 085806 | [21] | Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X and Min B 2012 Nat. Mater. 11 936 | [22] | Yan R, Sensale-Rodriguez B, Liu L, Jena D and Xing H G 2012 Opt. Express 20 28664 | [23] | Mousavi S H, Kholmanov I, Alici K B, Purtseladze D, Arju N, Tatar K, Fozdar D Y, Suk J W, Hao Y, Khanikaev A B, Ruoff R S and Shvets G 2013 Nano Lett. 13 1111 | [24] | Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257 | [25] | Driscoll T, Kim H T, Chae B G, Kim B G, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra M D and Basov D N 2009 Science 325 1518 | [26] | Zhang Z, Tian Z, Chang C, Wang X G, Zhang X Q, Quyang C M, Gu J Q and Zhang W L 2018 Nanotechnology and Precision Engineering 1 123 | [27] | Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K and Liu Y L 2010 Appl. Phys. Lett. 97 021111 | [28] | Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y and Zhang P X 2012 J. Phys. D 45 235106 | [29] | Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N and Soukoulis C M 2009 Phys. Rev. B 79 161102 | [30] | Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Iqbal S, Wang X, Tian Z, Tang W X, Cheng Q, Han J G, Zhang W L and Cui T J 2016 Adv. Opt. Mater. 4 1965 | [31] | Yan X, Liang L J, Zhang Z, Yang M S, Wei D Q, Wang M, Li Y P, Lv Y Y, Zhang X F, Ding X and Yao J Q 2018 Acta Phys. Sin. 67 118102 | [32] | Xu Z C, Gao R M, Ding C F, Wu L, Zhang Y T and Yao J Q 2015 Opt. Mater. 42 148 | [33] | Xu Z C, Gao R M, Ding C F, Wu L, Zhang Y T and Yao J Q 2015 Opt. Commun. 344 125 | [34] | Hu T, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|