Chin. Phys. Lett.  2019, Vol. 36 Issue (11): 116801    DOI: 10.1088/0256-307X/36/11/116801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Observation of Simplest Water Chains on Surface Stabilized by a Hydroxyl Group at One End
An-Ning Dong1,2,5, Li-Huan Sun1,2, Xiang-Qian Tang1,2, Yi-Kun Yao1,2, Yang An1,2, Dong Hao1,2, Xin-Yan Shan1**, Xing-Hua Lu1,2,3,4**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
3Collaborative Innovation Center of Quantum Matter, Beijing 100190
4Songshan Lake Materials Laboratory, Dongguan 523808
5Engineering Technology Department, Zolix Instruments Co. Ltd, Beijing 101102
Cite this article:   
An-Ning Dong, Li-Huan Sun, Xiang-Qian Tang et al  2019 Chin. Phys. Lett. 36 116801
Download: PDF(1547KB)   PDF(mobile)(1904KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The key to fully understanding water-solid interfaces relies on the microscopic nature of hydrogen bond networks, including their atomic structures, interfacial interactions, and dynamic behaviors. Here, we report the observation of two types of simplest water chains on Au(111) surface which is expected unstable according to the rules of hydrogen network on noble metal surfaces. A common feature at the end of chain structures is revealed in high resolution scanning tunneling microscopy images. To explain the stability in observed hydrogen bond networks, we propose a structure model of the water chains terminated with a hydroxyl group. The model is consistent with detailed image analysis and molecular manipulation. The observation of simplest water chains suggests a new platform for exploring fundamental physics in hydrogen bond networks on surfaces.
Received: 09 July 2019      Published: 21 October 2019
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11774395 and 91753136, the Beijing Natural Science Foundation under Grant No 4181003, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant Nos XDB30201000 and XDB28000000.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/11/116801       OR      https://cpl.iphy.ac.cn/Y2019/V36/I11/116801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
An-Ning Dong
Li-Huan Sun
Xiang-Qian Tang
Yi-Kun Yao
Yang An
Dong Hao
Xin-Yan Shan
Xing-Hua Lu
[1]Henderson M A 2002 Surf. Sci. Rep. 46 1
[2]Hodgson A and Haq S 2009 Surf. Sci. Rep. 64 381
[3]Björneholm O et al 2016 Chem. Rev. 116 7698
[4]Mitsui T, Rose M, Fomin E, Ogletree D F and Salmeron M 2002 Science 297 1850
[5]Michaelides A and Morgenstern K 2007 Nat. Mater. 6 597
[6]Motobayashi K, Matsumoto C, Kim Y and Kawai M 2008 Surf. Sci. 602 3136
[7]Ranea V A et al 2004 Phys. Rev. Lett. 92 136104
[8]Kumagai T et al 2011 J. Chem. Phys. 134 024703
[9]Guo J et al 2014 Nat. Mater. 13 184
[10]Guo Y, Ding Z, Sun L, Li J, Meng S and Lu X 2016 ACS Nano 10 4489
[11]Liriano M L et al 2017 J. Am. Chem. Soc. 139 6403
[12]Dong A, Yan L, Sun L, Yan S, Shan X, Guo Y, Meng S and Lu X 2018 ACS Nano 12 6452
[13]Yamada T, Tamamori S, Okuyama H and Aruga T 2006 Phys. Rev. Lett. 96 036105
[14]Carrasco J et al 2009 Nat. Mater. 8 427
[15]Shiotari A and Sugimoto Y 2017 Nat. Commun. 8 14313
[16]Cerdá J et al 2004 Phys. Rev. Lett. 93 116101
[17]Nie S, Feibelman P J, Bartelt N C and Thürmer K 2010 Phys. Rev. Lett. 105 026102
[18]Thürmer K and Bartelt N C 2008 Phys. Rev. Lett. 100 186101
[19]Forster M, Raval R, Hodgson A, Carrasco J and Michaelides A 2011 Phys. Rev. Lett. 106 046103
[20]Salmeron M et al 2009 Faraday Discuss. 141 221
[21]Meng S, Wang E G and Gao S 2004 Phys. Rev. B 69 195404
[22]Stowell M H B et al 1997 Science 276 812
[23]Morgenstern M, Michely T and Comsa G 1996 Phys. Rev. Lett. 77 703
[24]Kumagai T et al 2009 Phys. Rev. B 79 035423
[25]Kumagai T et al 2012 Nat. Mater. 11 167
[26]Merte L R et al 2012 Science 336 889
[27]Meng X et al 2015 Nat. Phys. 11 235
[28]Peköz R and Donadio D 2017 J. Phys. Chem. C 121 16783
[29]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30]Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[31]Discussion with Professor Sheng Meng at Institute of Physics, CAS (unpublished results)
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 116801
[2] Hexu Zhang, Yuanhao Lyu, Wenqi Hu, Lan Chen, Yi-Qi Zhang, and Kehui Wu. Dehydrogenation Induced Formation of Chiral Core-Shell Arrays of Melamine on Ag(111)[J]. Chin. Phys. Lett., 2022, 39(11): 116801
[3] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 116801
[4] Chaofei Liu and Jian Wang. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials[J]. Chin. Phys. Lett., 2022, 39(7): 116801
[5] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 116801
[6] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 116801
[7] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 116801
[8] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 116801
[9] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 116801
[10] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 116801
[11] Shuo Yang, Zhenpeng Hu, Weihai Wang, Peng Cheng, Lan Chen, and Kehui Wu. Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111)[J]. Chin. Phys. Lett., 2020, 37(9): 116801
[12] Qian-Qian Yuan, Zhaopeng Guo, Zhi-Qiang Shi, Hui Zhao, Zhen-Yu Jia, Qianjin Wang, Jian Sun, Di Wu, and Shao-Chun Li. Ferromagnetic MnSn Monolayer Epitaxially Grown on Silicon Substrate[J]. Chin. Phys. Lett., 2020, 37(7): 116801
[13] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi *[J]. Chin. Phys. Lett., 0, (): 116801
[14] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi[J]. Chin. Phys. Lett., 2020, 37(6): 116801
[15] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 116801
Viewed
Full text


Abstract