CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Magnetic Coupling Induced Self-Assembly at Atomic Level |
Weiyu Xie†, Yu Zhu†, Jianpeng Wang, Aihua Cheng, Zhigang Wang** |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012
|
|
Cite this article: |
Weiyu Xie, Yu Zhu, Jianpeng Wang et al 2019 Chin. Phys. Lett. 36 116401 |
|
|
Abstract Developing accurate self-assembly is the key for constructing functional materials from a bottom-up approach. At present, it is mainly hindered by building blocks and driving modes. We design a new self-assembly method based on the magnetic coupling between spin-polarized electrons. First-principles calculations show that spin-polarized electrons from different endohedral metallofullerene (EMF) superatoms can pair each other to ensure a one-dimensional extending morphology. Furthermore, without ligand passivation, the EMF superatoms maintain their electronic structures robustly in self-assembly owing to the core-shell structure and the atomic-like electron arrangement rule. Therefore, it should noted that the magnetic coupling of monomeric electron spin polarization can be an important driving mechanism for high-precision self-assembly. These results represent a new paradigm for self-assembly and offer fresh opportunities for functional material construction at the atomic level.
|
|
Received: 05 October 2019
Published: 15 October 2019
|
|
PACS: |
64.75.Yz
|
(Self-assembly)
|
|
82.35.Np
|
(Nanoparticles in polymers)
|
|
31.15.-p
|
(Calculations and mathematical techniques in atomic and molecular physics)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11674123. |
|
|
[1] | Service R F 2005 Science 309 95 | [2] | Aspuru-Guzik A et al 2019 Nat. Chem. 11 286 | [3] | Forgan R S, Sauvage J P, Stoddart J F 2011 Chem. Rev. 111 5434 | [4] | McConnell J, Wood C S, Neelakandan P P, Nitschke J R 2015 Chem. Rev. 115 7729 | [5] | Song, Kandapal S, Gu J, Zhang K, Reese A, Ying Y, Wang L, Wang H, Li Y, Wang M, Lu S, Hao X Q, Li X, Xu B, Li X 2018 Nat. Commun. 9 4575 | [6] | Ecker A, Weckert E, Schnöckel H 1997 Nature 387 379 | [7] | Nishigaki J, Koyasu K, Tsukuda T 2014 Chem. Rec. 14 897 | [8] | García L M, Roduner E, Akdogan Y, Wilhelm F, Rogalev A 2009 Phys. Rev. B 80 14404 | [9] | Zhou M, Jin R, Sfeir M Y, Chen Y, Song Y, Jin R 2017 Proc. Natl. Acad. Sci. USA 114 4697 | [10] | Whitesides G M, Boncheva M 2002 Proc. Natl. Acad. Sci. USA 99 4769 | [11] | Knight W D, Clemenger K, W A de Heer, Saunders W A, Chou M, Cohen M L 1984 Phys. Rev. Lett. 52 2141 | [12] | Jena P 2013 J. Phys. Chem. Lett. 4 1432 | [13] | Claridge S A, Castleman A W, Khanna S N, Murray C B, Sen A, Weiss P S 2009 ACS Nano 3 244 | [14] | Guo T, Diener M D, Chai Y, Alford M J, Haufler R E, McClure S M, Ohno T, Weaver J H, Scuseria G E, Smalley R E 1992 Science 257 1661 | [15] | Dai X, Gao Y, Jiang W, Lei Y, Wang Z 2015 Phys. Chem. Chem. Phys. 17 23308 | [16] | Xie W, Jiang W, Gao Y, Wang J, Wang Z 2018 Chem. Commun. 54 13383 | [17] | Li J, Guo G, Li S, Wang R, Wan J, Bai L 2005 Adv. Mater. 17 71 | [18] | Wakahara T, Nemoto Y, Xu M, Miyazawa K, Fujita D 2010 Carbon 48 3359 | [19] | Xu Y, Chen X, Liu F, Chen X, Guo J, Yang S 2014 Mater. Horiz. 1 411 | [20] | Moad G, Solomon D H 1995 The Chemistry of Free Radical Polymerization (Oxford: Pergamon Press) | [21] | Yan C, Su B, Shi Y, Jiang L 2019 Nano Today 25 13 | [22] | Coulais C, Sabbadini A, Vink F, M van Hecke 2018 Nature 561 512 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|