Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 107404    DOI: 10.1088/0256-307X/36/10/107404
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Superconductivity of the FeSe/SrTiO$_{3}$ Interface in View of BCS–BEC Crossover
Shuyuan Zhang1,2, Guangyao Miao1,2, Jiaqi Guan1,2, Xiaofeng Xu1,2, Bing Liu1,2, Fang Yang1, Weihua Wang1, Xuetao Zhu1,2,3**, Jiandong Guo1,2,3,4**
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
3Songshan Lake Materials Laboratory, Dongguan 523808
4Beijing Academy of Quantum Information Sciences, Beijing 100193
Cite this article:   
Shuyuan Zhang, Guangyao Miao, Jiaqi Guan et al  2019 Chin. Phys. Lett. 36 107404
Download: PDF(2479KB)   PDF(mobile)(3339KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In paired Fermi systems, strong many-body effects exhibit in the crossover regime between the Bardeen–Cooper–Schrieffer (BCS) and the Bose–Einstein condensation (BEC) limits. The concept of the BCS–BEC crossover, which is studied intensively in the research field of cold atoms, has been extended to condensed matters. Here by analyzing the typical superconductors within the BCS–BEC phase diagram, we find that FeSe-based superconductors are prone to shift their positions in the BCS–BEC crossover regime by charge doping or substrate substitution, since their Fermi energies and the superconducting gap sizes are comparable. Especially at the interface of single-layer FeSe on SrTiO$_{3}$ substrate, the superconductivity is relocated closer to the crossover unitary than other doped FeSe-based materials, indicating that the pairing interaction is effectively modulated. We further show that hole-doping can drive the interfacial system into the phase with possible pre-paired electrons, demonstrating its flexible tunability within the BCS–BEC crossover regime.
Received: 05 July 2019      Published: 21 September 2019
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/10/107404       OR      https://cpl.iphy.ac.cn/Y2019/V36/I10/107404
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuyuan Zhang
Guangyao Miao
Jiaqi Guan
Xiaofeng Xu
Bing Liu
Fang Yang
Weihua Wang
Xuetao Zhu
Jiandong Guo
[1]Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[2]Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 106 162
[3]Cho A 2011 Science 332 190
[4]Randeria M and Taylor E 2014 Annu. Rev. Condens. Matter Phys. 5 209
[5]Randeria M, Zwerger W and Zwierlein M 2012 The BCS–BEC Crossover And The Unitary Fermi Gas Edited By Zwerger W (Berlin, Heidelberg: Springer) chap 1 p 1
[6]Gaebler J P, Stewart J T, Drake T E, Jin D S, Perali A, Pieri P and Strinati G C 2010 Nat. Phys. 6 569
[7]Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[8]Ku M J H, Sommer A T, Cheuk L W and Zwierlein M W 2012 Science 335 563
[9]Schirotzek A, Shin Y, Schunck C H and Ketterle W 2008 Phys. Rev. Lett. 101 140403
[10]Uemura Y J 1997 Physica C 282 194
[11]Chen Q, Stajic J, Tan S and Levin K 2005 Phys. Rep. 412 1
[12]Uemura Y J, Luke G M, Sternlieb B J, Brewer J H, Carolan J F, Hardy W N, Kadono R, Kempton J R, Kiefl R F, Kreitzman S R, Mulhern P, Riseman T M, Williams D L, Yang B X, Uchida S, Takagi H, Gopalakrishnan J, Sleight A W, Subramanian M A, Chien C L, Cieplak M Z, Xiao G, Lee V Y, Statt B W, Stronach C E, Kossler W J and Yu X H 1989 Phys. Rev. Lett. 62 2317
[13]Uemura Y J 2004 J. Phys.: Condens. Matter 16 S4515
[14]Uemura Y J, Le L P, Luke G M, Sternlieb B J, Wu W D, Brewer J H, Riseman T M, Seaman C L, Maple M B, Ishikawa M, Hinks D G, Jorgensen J D, Saito G and Yamochi H 1991 Phys. Rev. Lett. 66 2665
[15]Yang Y and Pines D 2014 Proc. Natl. Acad. Sci. USA 111 18178
[16]Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, von Löhneysen H, Shibauchi T and Matsuda Y 2014 Proc. Natl. Acad. Sci. USA 111 16309
[17]Watashige T, Arsenijević S, Yamashita T, Terazawa D, Onishi T, Opherden L, Kasahara S, Tokiwa Y, Kasahara Y, Shibauchi T, von Löhneysen H, Wosnitza J and Matsuda Y 2017 J. Phys. Soc. Jpn. 86 014707
[18]Lubashevsky Y, Lahoud E, Chashka K, Podolsky D and Kanigel A 2012 Nat. Phys. 8 309
[19]Okazaki K, Ito Y, Ota Y, Kotani Y, Shimojima T, Kiss T, Watanabe S, Chen C T, Niitaka S, Hanaguri T, Takagi H, Chainani A and Shin S 2014 Sci. Rep. 4 4109
[20]Rinott S, Chashka K B, Ribak A, Rienks E D L, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Randeria M and Kanigel A 2017 Sci. Adv. 3 e1602372
[21]Chubukov A 2012 Annu. Rev. Condens. Matter Phys. 3 57
[22]Hanaguri T, Kasahara S, Böker J, Eremin I, Shibauchi T and Matsuda Y 2019 Phys. Rev. Lett. 122 077001
[23]Takahashi H, Nabeshima F, Ogawa R, Ohmichi E, Ohta H and Maeda A 2019 Phys. Rev. B 99 060503
[24]Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[25]Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K and Ma X C 2014 Chin. Phys. Lett. 31 017401
[26]Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q and Zhou X J 2012 Nat. Commun. 3 931
[27]Zhang H, Zhang D, Lu X, Liu C, Zhou G, Ma X, Wang L, Jiang P, Xue Q K and Bao X 2017 Nat. Commun. 8 214
[28]Zhao W W, Li M D, Chang C Z, Jiang J, Wu L J, Liu C X, Moodera J S, Zhu Y M and Chan M H W 2018 Sci. Adv. 4 eaao2682
[29]Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H and Shen Z X 2014 Nature 515 245
[30]Zhang S, Guan J, Jia X, Liu B, Wang W, Li F, Wang L, Ma X, Xue Q, Zhang J, Plummer E W, Zhu X and Guo J 2016 Phys. Rev. B 94 081116
[31]Zhang S, Guan J, Wang Y, Berlijn T, Johnston S, Jia X, Liu B, Zhu Q, An Q, Xue S, Cao Y, Yang F, Wang W, Zhang J, Plummer E W, Zhu X and Guo J 2018 Phys. Rev. B 97 035408
[32]Zhang S, Wei T, Guan J, Zhu Q, Qin W, Wang W, Zhang J, Plummer E W, Zhu X, Zhang Z and Guo J 2019 Phys. Rev. Lett. 122 066802
[33]Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S and Feng D L 2011 Nat. Mater. 10 273
[34]Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z and Feng D L 2015 Phys. Rev. B 92 060504
[35]Rebec S N, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R G and Shen Z X 2017 Phys. Rev. Lett. 118 067002
[36]Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G and Feng D L 2014 Nat. Commun. 5 5044
[37]Micnas R and Tobijaszewska B 2002 J. Phys.: Condens. Matter 14 9631
[38]Nishida Y and Son D T 2012 The BCS–BEC Crossover And The Unitary Fermi Gas Edited By Zwerger W (Berlin, Heidelberg: Springer) chap 7 p 233
[39]Ding H, Lv Y F, Zhao K, Wang W L, Wang L, Song C L, Chen X, Ma X C and Xue Q K 2016 Phys. Rev. Lett. 117 067001
[40]Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B and Feng D 2013 Nat. Mater. 12 634
[41]Guan J, Liu J, Liu B, Huang X, Zhu Q, Zhu X, Sun J, Meng S, Wang W and Guo J 2017 Phys. Rev. B 95 205405
[42]Wang Q, Shen Y, Pan B, Hao Y, Ma M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H and Zhao J 2016 Nat. Mater. 15 159
[43]Pan B, Shen Y, Hu D, Feng Y, Park J T, Christianson A D, Wang Q, Hao Y, Wo H, Yin Z, Maier T A and Zhao J 2017 Nat. Commun. 8 123
[44]Friemel G, Liu W P, Goremychkin E A, Liu Y, Park J T, Sobolev O, Lin C T, Keimer B and Inosov D S 2012 EPL (Europhys. Lett.) 99 67004
[45]Lee D H 2018 Annu. Rev. Condens. Matter Phys. 9 261
[46]Liu C, Wang Z, Ye S, Chen C, Liu Y, Wang Q, Wang Q H and Wang J 2019 Nano Lett. 19 3464
[47]Guyaux J L, Lambin P and Thiry P A 2003 Prog. Surf. Sci. 74 319
[48]Lambin P, Senet P and Lucas A A 1991 Phys. Rev. B 44 6416
[49]Kostov K L, Polzin S, Saha S K, Brovko O, Stepanyuk V and Widdra W 2013 Phys. Rev. B 87 235416
[50]Delugas P, Fiorentini V, Filippetti A and Pourtois G 2007 Phys. Rev. B 75 115126
[51]Oshima C, Aizawa T, Souda R and Ishizawa Y 1990 Solid State Commun. 73 731
[52]Barker A S 1966 Phys. Rev. 145 391
[53]Uwe H and Sakudo T 1977 Phys. Rev. B 15 337
[54]Beattie I R and Gilson T R 1969 J. Chem. Soc. A: Inorg. Phys. Theor. p 2322
[55]Zhou B and He D 2008 J. Raman Spectrosc. 39 1475
Related articles from Frontiers Journals
[1] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 107404
[2] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 107404
[3] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 107404
[4] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 107404
[5] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 107404
[6] Zhidan Li, Qiang Han. Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain[J]. Chin. Phys. Lett., 2018, 35(7): 107404
[7] Zhidan Li, Qiang Han. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling[J]. Chin. Phys. Lett., 2018, 35(4): 107404
[8] Gargee Sharma, Smita Sharma. Theoretical Study of Screening Dependence of Aluminium Doped MgB$_{2}$[J]. Chin. Phys. Lett., 2018, 35(3): 107404
[9] LIU Mi, ZHU Rui. Shot Noise of the Conductance through a Superconducting Barrier in Graphene[J]. Chin. Phys. Lett., 2015, 32(12): 107404
[10] ZHAO Zi-Xu, PAN Qi-Yuan, JING Ji-Liang. Holographic Superconductor Models with RF2 Corrections[J]. Chin. Phys. Lett., 2013, 30(12): 107404
[11] ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan. The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors[J]. Chin. Phys. Lett., 2013, 30(5): 107404
[12] ZHOU Jian-Hui, QIN Tao, SHI Jun-Ren. Intra-Valley Spin-Triplet p+ip Superconducting Pairing in Lightly Doped Graphene[J]. Chin. Phys. Lett., 2013, 30(1): 107404
[13] Aditya M. Vora. Superconducting State Parameters of NbxTayMoz Superconductors[J]. Chin. Phys. Lett., 2010, 27(2): 107404
[14] Aditya M. Vora. Modified Transition Temperature Equation for Superconductors[J]. Chin. Phys. Lett., 2008, 25(6): 107404
[15] Aditya M. Vora. Superconducting State Parameters of CuCZr100-C Binary Amorphous Alloys by Pseudopotential Approach[J]. Chin. Phys. Lett., 2007, 24(9): 107404
Viewed
Full text


Abstract