Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 107403    DOI: 10.1088/0256-307X/36/10/107403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide
Hui-Can Mao1,2, Bing-Feng Hu3**, Yuan-Hua Xia3, Xi-Ping Chen3, Cao Wang4, Zhi-Cheng Wang5, Guang-Han Cao5,6, Shi-Liang Li2,7,8, Hui-Qian Luo2,7**
1Department of Physics and Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999
4Department of Physics, Shandong University of Technology, Zibo 255049
5Department of Physics and State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027
6Collaborative Innovation Centre of Advanced Microstructures, Nanjing 210093
7Songshan Lake Materials Laboratory, Dongguan 523808
8School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia et al  2019 Chin. Phys. Lett. 36 107403
Download: PDF(999KB)   PDF(mobile)(973KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We use neutron powder diffraction to study the non-superconducting phases of ThFeAsN$_{1-x}$O$_x$ with $x=0.15$, 0.6. In our previous results of the superconducting phase ThFeAsN with $T_{\rm c}=30$ K, no magnetic transition is observed by cooling down to 6 K, and possible oxygen occupancy at the nitrogen site is shown in the refinement [Europhys. Lett. 117 (2017) 57005]. Here in the oxygen doped system ThFeAsN$_{1-x}$O$_x$, two superconducting regions ($0\leqslant x \leqslant 0.1$ and $0.25\leqslant x \leqslant 0.55$) are identified by transport experiments [J. Phys.: Condens. Matter 30 (2018) 255602]. However, within the resolution of our neutron powder diffraction experiment, neither the intermediate doping $x=0.15$ nor the heavily overdoped compound $x=0.6$ shows any magnetic order from 300 K to 4 K. Therefore, while it shares the common phenomenon of two superconducting domes as most 1111-type iron-based superconductors, the magnetically ordered parent compound may not exist in this nitride family.
Received: 14 July 2019      Published: 21 September 2019
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
  61.05.F- (Neutron diffraction and scattering)  
Fund: Supported by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant Nos XDB07020300 and XDB25000000, the National Key Research and Development Program of China under Grant Nos 2017YFA0303103, 2017YFA0302903 and 2016YFA0300502, the National Natural Science Foundation of China under Grant Nos 11374011, 11504347, 11304183, 11674406 and 11822411, the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2016004, the Key Laboratory of Neutron Physics of CAEP under Grant No 2015AB03, and the Science Challenge Project under Grant No TZ2016004.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/10/107403       OR      https://cpl.iphy.ac.cn/Y2019/V36/I10/107403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui-Can Mao
Bing-Feng Hu
Yuan-Hua Xia
Xi-Ping Chen
Cao Wang
Zhi-Cheng Wang
Guang-Han Cao
Shi-Liang Li
Hui-Qian Luo
[1]Dai P C 2015 Rev. Mod. Phys. 87 855
[2]Si Q, Yu R and Abrahams E 2016 Nat. Rev. Mater. 1 16017
[3]Inosov D S 2016 C. R. Phys. 17 60
[4]Stewart G R 2011 Rev. Mod. Phys. 83 1589
[5]de la Cruz C et al 2008 Nature 453 899
[6]Huang Q Z et al 2008 Phys. Rev. Lett. 101 257003
[7]Li S L et al 2009 Phys. Rev. B 80 020504(R)
[8]Li S L et al 2009 Phys. Rev. B 79 054503
[9]Bao W, Huang Q Z , Chen G F, Green M A, Wang D M , He J B and Qiu Y M 2011 Chin. Phys. Lett. 28 086104
[10]Ye F, Chi S, Bao W, Wang X F, Ying J J, Chen X H, Wang H D, Dong C H and Fang M H 2011 Phys. Rev. Lett. 107 137003
[11]Wang M et al 2011 Phys. Rev. B 84 094504
[12]Meier W R et al 2018 npj Quantum Mater. 3 5
[13]Kreyssig A et al 2018 Phys. Rev. B 97 224521
[14]Böhmer A E, Hardy F, Wang L, Wolf T, Schweiss P and Meingast C 2015 Nat. Commun. 6 7911
[15]Avci S et al 2014 Nat. Commun. 5 3845
[16]Hosono H et al 2015 Sci. Technol. Adv. Mater. 16 033503
[17]Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[18]Luetkens H et al 2009 Nat. Mater. 8 305
[19]Yang J et al 2015 Chin. Phys. Lett. 32 107401
[20]Yang J, Oka T, Li Z, Yang H X, Li J Q, Chen G F and Zheng G Q 2018 Sci. Chin.-Phys. Mech. Astron. 61 117411
[21]Xiao Y, Su Y, Mittal R, Chatterji T, Hansen T, Kumar C M N, Matsuishi S, Hosono H and Brueckel T 2009 Phys. Rev. B 79 060504(R)
[22]Matsuishi Set al 2012 Phys. Rev. B 85 014514
[23]Iimura S, Matuishi S, Sato H, Hanna T, Muraba Y, Kim S W, Kim J E, Takata M and Hosono H 2012 Nat. Commun. 3 943
[24]Fujiwara N, Tsutsumi S, Iimura S, Matsuishi S, Hosono H, Yamakawa Y and Kontani H 2013 Phys. Rev. Lett. 111 097002
[25]Hosono H and Matsuishi S 2013 Curr. Opin. Solid State Mater. Sci. 17 49
[26]Wang C et al 2009 Europhys. Lett. 86 47002
[27]Kitagawa S, Iye T, Nakia Y, Ishida K, Wang C, Cao G H and Xu Z A 2014 J. Phys. Soc. Jpn. 83 023707
[28]Miyasaka S, Takemori A, Kobayashi T, Suzuki S, Saijo S and Tajima S 2013 J. Phys. Soc. Jpn. 82 124706
[29]Lai K T, Takemori A, Miyasaka S, Engetsu F, Mukuda H and Tajima S 2014 Phys. Rev. B 90 064504
[30]Shen C, Si B, Cao C, Yang X, Bao J, Tao Q, Li Y, Cao G and Xu Z A 2016 J. Appl. Phys. 119 083903
[31]Miyasaka S et al 2017 Phys. Rev. B 95 214515
[32]Mukuda H, Engetsu F, Shiota T, Lai K T, Yashima M, Kitaoka Y, Miyasaka S and Tajima S 2014 J. Phys. Soc. Jpn. 83 083702
[33]Hiraishi M et al 2014 Nat. Phys. 10 300
[34]Wang C et al 2016 J. Am. Chem. Soc. 138 2170
[35]Singh D J 2016 J. Alloys Compd. 687 786
[36]Wang G and Shi X 2016 Europhys. Lett. 113 67006
[37]Albedah M A et al 2017 J. Alloys Compd. 695 1128
[38]Mao H C, Wang C, Maynard-Casely H E, Huang Q Z, Wang Z C, Cao G H, Li S L and Luo H Q 2017 Europhys. Lett. 117 57005
[39]Shiroka T, Shang T, Wang C, Cao G H, Eremin I, Ott H R and Mesot J 2017 Nat. Commun. 8 156
[40]Adroja D et al 2017 Phys. Rev. B 96 144502
[41]Li B Z et al 2018 J. Phys.: Condens. Matter 30 255602
[42]Rodríguez-Carvajal J 1993 Physica B 192 55
[43]Muir S and Subramanian M A 2012 Prog. Solid State Chem. 40 41
Related articles from Frontiers Journals
[1] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 107403
[2] B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen. NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(12): 107403
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 107403
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 107403
[5] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 107403
[6] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 107403
[7] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 107403
[8] Shaobo Liu, Sheng Ma, Zhaosheng Wang, Wei Hu, Zian Li, Qimei Liang, Hong Wang, Yuhang Zhang, Zouyouwei Lu, Jie Yuan, Kui Jin, Jian-Qi Li, Li Pi, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes[J]. Chin. Phys. Lett., 2021, 38(5): 107403
[9] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 107403
[10] Cheng Zheng, Dapeng Zhao, Xinqiang Cai, Wantong Huang, Fanqi Meng, Qinghua Zhang, Lin Tang, Xiaopeng Hu, Lin Gu, Shuai-Hua Ji, Xi Chen. Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(8): 107403
[11] Shi-Hang Na, Wei Wu, and Jian-Lin Luo. Anisotropy Properties of Mn$_{2}$P Single Crystals with Antiferromagnetic Transition[J]. Chin. Phys. Lett., 2020, 37(8): 107403
[12] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 107403
[13] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 107403
[14] Yun Xie, Junsheng Feng, Hongjun Xiang, Xingao Gong. Interplay of Strain and Magnetism in FeSe Monolayers[J]. Chin. Phys. Lett., 2019, 36(5): 107403
[15] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 107403
Viewed
Full text


Abstract