Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 107401    DOI: 10.1088/0256-307X/36/10/107401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Cooper Molecules: Second Pairing of Cooper Pairs in Gapless Superconductor CeCoIn$_5$
Jiang Hong Man, Ze Cheng**
School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
Jiang Hong Man, Ze Cheng 2019 Chin. Phys. Lett. 36 107401
Download: PDF(497KB)   PDF(mobile)(503KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We establish a quantum field theory of phase transitions in gapless superconductor CeCoIn$_5$. It is found that uniform Cooper pair gases with pure gradient interactions with negative coefficient can undergo a Bardeen–Cooper–Schrieffer (BCS) condensation below a critical temperature. In the BCS condensation state, bare Cooper pairs with opposite wave vectors are bound into Cooper molecules, and uncoupled bare Cooper pairs are transformed into a new kind of quasiparticle, i.e., the dressed particles. The Cooper molecule system is a condensate or a superfluid, and the dressed particle system is a normal fluid. The critical temperature is derived analytically. The critical temperature of the superconductor CeCoIn$_5$ is obtained to be $T_{\rm c}=2.289$ K, which approaches the experimental data. The transition from the BCS condensation state to the normal state is a first-order phase transition.
Received: 27 June 2019      Published: 21 September 2019
PACS:  74.70.Ad (Metals; alloys and binary compounds)  
  74.25.Kc (Phonons)  
  74.20.Fg (BCS theory and its development)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 10174024 and 10474025.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/10/107401       OR      https://cpl.iphy.ac.cn/Y2019/V36/I10/107401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiang Hong Man
Ze Cheng
[1]Steglich F et al 1979 Phys. Rev. Lett. 43 1892
[2]Li Y et al 2018 Phys. Rev. Lett. 120 217001
[3]Petrovic C et al 2001 J. Phys.: Condens. Matter 13 L337
[4]Kogan V G et al 2009 J. Phys.: Condens. Matter 21 102204
[5]Cooper L N 1956 Phys. Rev. 104 1189
[6]Bardeen J et al 1957 Phys. Rev. 108 1175
[7]Abrikosov A A and Gor'kov L P 1960 Zh. Eksp. Teor. Fiz. 39 1781
Abrikosov A A and Gor'kov L P 1961 Sov. Phys.-JETP 12 1243
[8]Nozières P and Schmitt-Rink S 1985 J. Low Temp. Phys. 59 195
[9]Beliaev S T 1958 Sov. Phys.-JETP 7 289
[10]Fetter A L and Walecka J D 1971 Quantum Theory Of Many-Particle Systems (New York: McGraw-Hill) p 316
[11]Callaway J 1991 Quantum Theory Solid State 2nd edn (New York: Academic Press) p 720
[12]Vora A M 2008 Chin. Phys. Lett. 25 2162
[13]Fan W et al 2010 Chin. Phys. Lett. 27 087402
Related articles from Frontiers Journals
[1] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 107401
[2] Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, and Yanfeng Guo. Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations[J]. Chin. Phys. Lett., 2022, 39(6): 107401
[3] Yutao Jiang, Ze Yu, Yuxin Wang, Tenglong Lu, Sheng Meng, Kun Jiang, and Miao Liu. Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation[J]. Chin. Phys. Lett., 2022, 39(4): 107401
[4] Gaoning Zhang, Xianbiao Shi, Xiaolei Liu, Wei Xia, Hao Su, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, Weiwei Zhao, and Yanfeng Guo. de Haas–van Alphen Quantum Oscillations in BaSn$_{3}$ Superconductor with Multiple Dirac Fermions[J]. Chin. Phys. Lett., 2020, 37(8): 107401
[5] Xi Zhang, Tianchuang Luo, Xiyao Hu, Jing Guo, Gongchang Lin, Yuehui Li, Yanzhao Liu, Xiaokang Li, Jun Ge, Ying Xing, Zengwei Zhu, Peng Gao, Liling Sun, Jian Wang. Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe$_{2}$[J]. Chin. Phys. Lett., 2019, 36(5): 107401
[6] Gargee Sharma, Smita Sharma. Theoretical Study of Screening Dependence of Aluminium Doped MgB$_{2}$[J]. Chin. Phys. Lett., 2018, 35(3): 107401
[7] DONG Tao, YUAN Rui-Hua, SHI You-Guo, WANG Nan-Lin. Temperature-Induced Plasma Frequency Shift in Bi2Te3 and CuxBi2Se3[J]. Chin. Phys. Lett., 2013, 30(12): 107401
[8] WANG Yin-Bo,CHEN Li-Ping,**,ZHANG Chen,WANG Yue,GUO Zheng-Shan,CHEN Yi-Ling,FENG Qing-Rong**,GAN Zi-Zhao. Solution Fabrication of a Superconducting MgB2 Coated Conductor on Stainless Steel[J]. Chin. Phys. Lett., 2012, 29(4): 107401
[9] GAO Zhao-Shun, ZHANG Xian-Ping, WANG Dong-Liang, QI Yan-Peng, WANG Lei, CHENG Jun-Sheng, WANG Qiu-Liang, MA Yan-Wei**, AWAJI Satoshi, WATANABE Kazuo . Fabrication and Properties of Aligned Sr0.6K0.4Fe2As2 Superconductors by High Magnetic Field Processing[J]. Chin. Phys. Lett., 2011, 28(6): 107401
[10] GAO Zhao-Shun, MA Yan-Wei**, WANG Dong-Liang, ZHANG Xian-Ping, AWAJI Satoshi, WATANABE Kazuo . Enhancement of Critical Current Density and Flux Pinning in Acetone and La2O3 Codoped MgB2 Tapes[J]. Chin. Phys. Lett., 2010, 27(11): 107401
[11] FAN Wei, WANG Jiang-Long, ZOU Liang-Jian, ZENG Zhi. Non-Adiabatic Effects of Superconductor Silane under High Pressure[J]. Chin. Phys. Lett., 2010, 27(8): 107401
[12] Aditya M. Vora. Superconducting State Parameters of NbxTayMoz Superconductors[J]. Chin. Phys. Lett., 2010, 27(2): 107401
[13] YAN Yan, GONG Jie, ZONG Zhan-Guo,. Electronic, Vibrational, and Superconducting Properties of High-Pressure Metallic SiH4: ab initio Calculations[J]. Chin. Phys. Lett., 2010, 27(1): 107401
[14] WANG Yue-Qin, YUAN Lan-Feng, YANG Jin-Long. Lattice Dynamics and Superconductivity of RuB2: A First-Principles Study[J]. Chin. Phys. Lett., 2008, 25(8): 107401
[15] HUANG Yan, WANG Yong-Lei, SHAN Lei, JIA Ying, YANG Huan, WEN Hai-Hu, ZHUANG Cheng-Gang, LI Qi, CUI Yi, XI Xiao-Xing,. Field Dependence of π-Band Superconducting Gap in MgB2 Thin Films from Point-Contact Spectroscopy[J]. Chin. Phys. Lett., 2008, 25(6): 107401
Viewed
Full text


Abstract