CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity |
Ping Jiang1,2, Chao Li1,2, Yuan-Yuan Chen3, Gang Song1,2, Yi-Lin Wang1,2, Li Yu1,2** |
1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 2School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 3China South Industries Research Academy, Beijing 100089
|
|
Cite this article: |
Ping Jiang, Chao Li, Yuan-Yuan Chen et al 2019 Chin. Phys. Lett. 36 107301 |
|
|
Abstract We investigate strong exciton-plasmon coupling and plasmon-mediated hybridization between the Frenkel (F) and Wannier–Mott (WM) excitons of an organic-inorganic hybrid system consisting of a silver ring separated from a monolayer WS$_{2}$ by J-aggregates. The extinction spectra of the hybrid system calculated by employing the coupled oscillator model are consistent with the results simulated by the finite-difference time-domain method. The calculation results show that strong couplings among F excitons, WM excitons, and localized surface plasmon resonances (LSPRs) lead to the appearance of three plexciton branches in the extinction spectra. The weighting efficiencies of the F exciton, WM exciton and LSPR modes in three plexciton branches are used to analyze the exciton-polaritons in the system. Furthermore, the strong coupling between two different excitons and LSPRs is manipulated by tuning F or WM exciton resonances.
|
|
Received: 08 July 2019
Published: 21 September 2019
|
|
PACS: |
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
11.15.Me
|
(Strong-coupling expansions)
|
|
52.25.Tx
|
(Emission, absorption, and scattering of particles)
|
|
71.36.+c
|
(Polaritons (including photon-phonon and photon-magnon interactions))
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301300, the National Natural Science Foundation of China under Grant Nos 11574035 and 11374041, and the State Key Laboratory of Information Photonics and Optical Communications. |
|
|
[1] | Baranov D G, Wersäll M, Cuadra J et al 2017 ACS Photon. 5 24 | [2] | Cuadra J, Baranov D G, Wersäll M et al 2018 Nano Lett. 18 1777 | [3] | Törmä P and Barnes W L 2015 Rep. Prog. Phys. 78 013901 | [4] | Flick J, Rivera N and Narang P 2018 Nanophotonics 7 1479 | [5] | Xu D, Xiong X, Wu L et al 2018 Adv. Opt. Photon. 10 703 | [6] | Zhou Z K, Liu J, Bao Y et al Prog. Quantum Electron. 65 1 | [7] | Lidzey D G, Wenus J, Whittaker D M et al 2004 J. Lumin. 110 347 | [8] | Holmes R J, Kéna-Cohen S, Menon V M et al 2006 Phys. Rev. B 74 235211 | [9] | Wenus J, Parashkov R, Ceccarelli S et al 2006 Phys. Rev. B 74 235212 | [10] | Lanty G, Zhang S, Lauret J S et al 2011 Phys. Rev. B 84 195449 | [11] | Holmes R J and Forrest S R 2004 Phys. Rev. Lett. 93 186404 | [12] | Slootsky M, Liu X, Menon V M et al 2014 Phys. Rev. Lett. 112 076401 | [13] | Luo X 2015 Sci. Chin. Ser. G 58 594201 | [14] | Gao P, Yao N, Wang C et al 2015 Appl. Phys. Lett. 106 093110 | [15] | Lidzey D G, Bradley D D C, Virgili T et al 1999 Phys. Rev. Lett. 82 3316 | [16] | Flatten L C, Coles D M, He Z et al 2017 Nat. Commun. 8 14097 | [17] | Liu G B, Xiao D, Yao Y et al 2015 Chem. Soc. Rev. 44 2643 | [18] | Rodriguez S R, Amo A, Sagnes I et al 2016 Nat. Commun. 7 11887 | [19] | Zhang S, Zhang H, Xu T et al 2018 Phys. Rev. B 97 235401 | [20] | Zhu B, Chen X and Cui X 2015 Sci. Rep. 5 9218 | [21] | Abid I, Chen W, Yuan J et al 2017 ACS Photon. 4 1653 | [22] | Wen J, Wang H, Wang W et al 2017 Nano Lett. 17 4689 | [23] | Vasa P, Pomraenke R, Cirmi G et al 2010 ACS Nano 4 7559 | [24] | Coles D M, Somaschi N, Michetti P et al 2014 Nat. Mater. 13 712 | [25] | Zhang K, Xu Y, Chen T Y et al 2016 Opt. Lett. 41 5740 | [26] | Balasubrahmaniyam M, Kar D, Sen P et al 2017 Appl. Phys. Lett. 110 171101 | [27] | Yang H, Yao J, Wu X W et al 2017 J. Phys. Chem. C 121 25455 | [28] | Zhang K, Shi W B, Wang D et al 2016 Appl. Phys. Lett. 108 193111 | [29] | Fraser M D, Höfling S and Yamamoto Y 2016 Nat. Mater. 15 1049 | [30] | Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 | [31] | Wang S, Li S, Chervy T et al 2016 Nano Lett. 16 4368 | [32] | Li Y, Chernikov A, Zhang X et al 2014 Phys. Rev. B 90 205422 | [33] | Gentile M J, Núñez-Sánchez S and Barnes W L 2014 Nano Lett. 14 2339 | [34] | Fofang N T, Park T H, Neumann O et al 2008 Nano Lett. 8 3481 | [35] | Schlather A E, Large N, Urban A S et al 2013 Nano Lett. 13 3281 | [36] | O'Donnell K P and Chen X 1991 Appl. Phys. Lett. 58 2924 | [37] | Wu X, Gray S K and Pelton M 2010 Opt. Express 18 23633 | [38] | Jiang P, Song G, Wang Y et al 2019 Opt. Express 27 16613 | [39] | Kimble H J 2008 Nature 453 1023 | [40] | Chen G, Yu Y C, Zhuo X L et al 2013 Phys. Rev. B 87 195138 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|