Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 107102    DOI: 10.1088/0256-307X/36/10/107102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection
Xin Shang, Hai-Wen Liu**, Ke Xia**
Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
Xin Shang, Hai-Wen Liu, Ke Xia 2019 Chin. Phys. Lett. 36 107102
Download: PDF(1723KB)   PDF(mobile)(3795KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the charge transport properties of the spin-selective Andreev reflection (SSAR) effect between a spin polarized scanning tunneling microscope (STM) tip and a Majorana zero mode (MZM). Considering both the MZM and the excited states, we calculate the conductance and the shot noise power of the noncollinear SSAR using scattering theory. We find that the excited states give rise to inside peaks. Moreover, we numerically calculate the shot noise power and the Fano factor of the SSAR effect. Our calculation shows that the shot noise power and the Fano factor are related to the angle between the spin polarization direction of the STM tip and that of the MZM, which provide additional characteristics to detect the MZM via SSAR.
Received: 07 September 2018      Published: 21 September 2019
PACS:  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  74.78.-w (Superconducting films and low-dimensional structures)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11674028, 61774017, 11734004 and 21421003, and the National Key Research and Development Program of China under Grant No 2017YFA0303300.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/10/107102       OR      https://cpl.iphy.ac.cn/Y2019/V36/I10/107102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin Shang
Hai-Wen Liu
Ke Xia
[1]Moore G and Read N 1991 Nucl. Phys. B 360 362
[2]Read N and Green D 2000 Phys. Rev. B 61 10267
[3]Kitaev A Y 2001 Phys.-Usp. 44 131
[4]Kitaev A Y 2003 Ann. Phys. 303 2
[5]Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083
[6]Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[7]Elliott S R and Franz M 2015 Rev. Mod. Phys. 87 137
[8]Zhu G Y, Wang R R, Zhang G M 2017 Physics 46 154 (in Chinese)
[9]Aguado R 2017 Riv. Nuovo Cimento 40 523
[10]Sarma S D, Nayak C and Tewari S 2006 Phys. Rev. B 73 220502
[11]Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[12]Lutchyn R M, Sau J D and Sarma D S 2010 Phys. Rev. Lett. 105 077001
[13]Deng M X, Zheng S H, Yang M, Hu L B and Wang R Q 2015 Chin. Phys. B 24 037302
[14]He J J, Ng T K, Lee P A and Law K T 2014 Phys. Rev. Lett. 112 037001
[15]Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C and Jia J F 2014 Phys. Rev. Lett. 112 217001
[16]Kawakami T and Hu X 2015 Phys. Rev. Lett. 115 177001
[17]Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003
[18]Hu L H, Li C, Xu D H, Zhou Y and Zhang F C 2016 Phys. Rev. B 94 224501
[19]Blanter Y and Bttiker M 2000 Phys. Rep. 336 1
[20]Sergueev N, Sun Q F, Guo H, Wang B and Wang J 2002 Phys. Rev. B 65 165303
[21]Fisher D S and Lee P A 1981 Phys. Rev. B 23 6851
[22]Datta S 1997 Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics, Microelectronic Engineering (Cambridge: Cambridge University Press)
[23]Klapwijk T, Blonder G and Tinkham M 1982 Physica B+C 109–110 1657
[24]Kashiwaya S and Tanaka Y 2000 Rep. Prog. Phys. 63 1641
[25]Tinkham M 2004 Introduction to Superconductivity 2nd edn (Dover: Courier Corporation)
Related articles from Frontiers Journals
[1] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 107102
[2] Zhidan Li, Qiang Han. Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain[J]. Chin. Phys. Lett., 2018, 35(7): 107102
[3] Zhidan Li, Qiang Han. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling[J]. Chin. Phys. Lett., 2018, 35(4): 107102
[4] Lu-Bing Shao, Zi-Dan Wang, Rui Shen, Li Sheng, Bo-Gen Wang, Ding-Yu Xing. Controlling Fusion of Majorana Fermions in One-Dimensional Systems by Zeeman Field[J]. Chin. Phys. Lett., 2017, 34(6): 107102
[5] Ye Xiong. Fano Resonances Can Provide Two Criteria to Distinguish Majorana Bound States from Other Candidates in Experiments[J]. Chin. Phys. Lett., 2016, 33(05): 107102
[6] ZHANG Yin-Han, SHI Jun-Ren. Density Functional Theory of Composite Fermions[J]. Chin. Phys. Lett., 2015, 32(03): 107102
[7] HUANG Wei, WANG Zhao-Long, YAN Mu-Lin. Noncommutative Chern-Simons Description of the Fractional Quantum Hall Edge[J]. Chin. Phys. Lett., 2010, 27(6): 107102
[8] PENG De-Jun, CHENG Fang, ZHOU Guang-Hui,. Alternating-Current Conductivity for a Two-Channel Interacting Quantum Wire[J]. Chin. Phys. Lett., 2007, 24(2): 107102
[9] CHENG Kuan, LIU Yu-Liang. Numerical Study of Luttinger Liquid Regime of Two-Leg Hubbard Ladders[J]. Chin. Phys. Lett., 2005, 22(9): 107102
[10] Z. Bentalha, M. Tahiri, B. Liani. One-Dimensional Anyon Lattice and slq(2) Algebra Realization[J]. Chin. Phys. Lett., 2005, 22(5): 107102
[11] GU Bo, LOU Ji-Zhong, QIN Shao-Jing, XIANG Tao,. Exciton Excitations in a One-Dimensional Band Insulator with Hubbard Interactions[J]. Chin. Phys. Lett., 2004, 21(3): 107102
Viewed
Full text


Abstract