CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Pressure-Induced Metallization Accompanied by Elongated S–S Dimer in Charge Transfer Insulator NiS$_{2}$ |
Hao Wu1,2, Yong-Hui Zhou2**, Yi-Fang Yuan2,3, Chun-Hua Chen2,3, Ying Zhou2,3, Bo-Wen Zhang2,3, Xu-Liang Chen2, Chuan-Chuan Gu2, Chao An4, Shu-Yang Wang2,3, Meng-Yao Qi4, Ran-Ran Zhang2, Li-Li Zhang5, Xin-Jian Li1**, Zhao-Rong Yang2,3,4** |
1Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 2Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 3University of Science and Technology of China, Hefei 230026 4Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601 5Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204
|
|
Cite this article: |
Hao Wu, Yong-Hui Zhou, Yi-Fang Yuan et al 2019 Chin. Phys. Lett. 36 107101 |
|
|
Abstract The insulator-metal transition triggered by pressure in charge transfer insulator NiS$_{2}$ is investigated by combining high-pressure electrical transport, synchrotron x-ray diffraction and Raman spectroscopy measurements up to 40–50 GPa. Upon compression, we show that the metallization firstly appears in the low temperature region at $\sim$3.2 GPa and then extends to room temperature at $\sim $8.0 GPa. During the insulator-metal transition, the bond length of S–S dimer extracted from the synchrotron x-ray diffraction increases with pressure, which is supported by the observation of abnormal red-shift of the Raman modes between 3.2 and 7.1 GPa. Considering the decreasing bonding-antibonding splitting due to the expansion of S–S dimer, the charge gap between the S-$pp\pi^*$ band and the upper Hubbard band of Ni-3$d$ $e_{\rm g}$ state is remarkably decreased. These results consistently indicate that the elongated S–S dimer plays a predominant role in the insulator-metal transition under high pressure, even though the $p$-$d$ hybridization is enhanced simultaneously, in accordance with a scenario of charge-gap-controlled type.
|
|
Received: 14 June 2019
Published: 21 September 2019
|
|
PACS: |
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
78.30.Am
|
(Elemental semiconductors and insulators)
|
|
72.20.Dp
|
(General theory, scattering mechanisms)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2018YFA0305700 and 2016YFA0401804, the National Natural Science Foundation of China under Grant Nos 11574323, 11704387, 11874362, 11804344, 11804341, 61774136, 11605276 and U1632275, the Major Program of Development Foundation of Hefei Center for Physical Science and Technology under Grant No 2018ZYFX002, the Users with Excellence Project of Hefei Science Center of Chinese Academy of Sciences under Grant No 2018HSC-UE012, the Natural Science Foundation of Anhui Province under Grant Nos 1808085MA06, 1908085QA18 and 1708085QA19, and the Director's Fund of Hefei Institutes of Physical Science of Chinese Academy of Sciences under Grant No YZJJ201621. |
|
|
[1] | Mott N F 1968 Rev. Mod. Phys. 40 677 | [2] | Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039 | [3] | Yao X, Honig J M, Hogan T, Kannewurf C and Spałek J 1996 Phys. Rev. B 54 17469 | [4] | Bouchard R J, Gillson J L and Jarrett H S 1973 Mater. Res. Bull. 8 489 | [5] | Kuneš J, Baldassarre L, Schächner B, Rabia K, Kuntscher C A, Korotin D M, Anisimov V I, McLeod J A, Kurmaev E Z and Moewes A 2010 Phys. Rev. B 81 035122 | [6] | Mori N, Mitsui T and Yomo S 1973 Solid State Commun. 13 1083 | [7] | Husmann A, Jin D S, Zastavker Y V, Rosenbaum T F, Yao X and Honig J M 1996 Science 274 1874 | [8] | Miyasaka S, Takagi H, Sekine Y, Takahashi H, Môri N and Cava R J 2000 J. Phys. Soc. Jpn. 69 3166 | [9] | Niklowitz P G, Alireza P L, Steiner M J, Lonzarich G G, Braithwaite D, Knebel G, Flouquet J and Wilson J A 2008 Phys. Rev. B 77 115135 | [10] | Feng Y, Jaramillo R, Banerjee A, Honig J M and Rosenbaum T F 2011 Phys. Rev. B 83 035106 | [11] | Friedemann S, Chang H, Gamża M B, Reiss P, Chen X, Alireza P, Coniglio W A, Graf D, Tozer S and Grosche F M 2016 Sci. Rep. 6 25335 | [12] | Zaanen J, Sawatzky G A and Allen J W 1985 Phys. Rev. Lett. 55 418 | [13] | Matsuura A Y, Shen Z X, Dessau D S, Park C H, Thio T, Bennett J W and Jepsen O 1996 Phys. Rev. B 53 R7584 | [14] | Bocquet A E, Mizokawa T, Saitoh T, Namatame H and Fujimori A 1992 Phys. Rev. B 46 3771 | [15] | Honig J M and Spałek J 1998 Chem. Mater. 10 2910 | [16] | Kwizera P, Dresselhaus M S and Adler D 1980 Phys. Rev. B 21 2328 | [17] | Matsuura M, Hiraka H, Yamada K and Endoh Y 2000 J. Phys. Soc. Jpn. 69 1503 | [18] | Matsuura A Y, Watanabe H, Kim C, Doniach S, Shen Z X, Thio T and Bennett J W 1998 Phys. Rev. B 58 3690 | [19] | Mamiya K, Mizokawa T, Fujimori A, Miyadai T, Chandrasekharan N, Krishnakumar S R, Sarma D D, Takahashi H, Môri N and Suga S 1998 Phys. Rev. B 58 9611 | [20] | Krishnakumar S R and Sarma D D 2003 Phys. Rev. B 68 155110 | [21] | Iwaya K, Kohsaka Y, Satow S, Hanaguri T, Miyasaka S and Takagi H 2004 Phys. Rev. B 70 161103 | [22] | Perucchi A, Marini C, Valentini M, Postorino P, Sopracase R, Dore P, Hansmann P, Jepsen O, Sangiovanni G, Toschi A, Held K, Topwal D, Sarma D D and Lupi S 2009 Phys. Rev. B 80 073101 | [23] | Xu H C, Zhang Y, Xu M, Peng R, Shen X P, Strocov V N, Shi M, Kobayashi M, Schmitt T, Xie B P and Feng D L 2014 Phys. Rev. Lett. 112 087603 | [24] | Schuster C, Gatti M and Rubio A 2012 Eur. Phys. J. B 85 325 | [25] | Marini C, Perucchi A, Chermisi D, Dore P, Valentini M, Topwal D, Sarma D D, Lupi S and Postorino P 2011 Phys. Rev. B 84 235134 | [26] | Han G, Choi S, Cho H, Sohn B, Park J G and Kim C 2018 Phys. Rev. B 98 125114 | [27] | Moon C Y, Kang H, Jang B G and Shim J H 2015 Phys. Rev. B 92 235130 | [28] | Fujii T, Tanaka K, Marumo F and Noda Y 1987 JOM 13 448 | [29] | Endo S, Mitsui T and Miyadai T 1973 Phys. Lett. A 46 29 | [30] | Krill G, Lapierre M F, Robert C, Gautier F, Czjzek G, Fink J and Schmidt H 1976 J. Phys. C 9 761 | [31] | Yao X and Honig J M 1994 Mater. Res. Bull. 29 709 | [32] | Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673 | [33] | Prescher C and Prakapenka V B 2015 High Press. Res. 35 223 | [34] | Toby B H 2001 J. Appl. Crystallogr. 34 210 | [35] | Matsuura M, Endoh Y, Hiraka H, Yamada K, Mishchenko A S, Nagaosa N and Solovyev I V 2003 Phys. Rev. B 68 094409 | [36] | Higo T and Nakatsuji S 2015 J. Phys. Soc. Jpn. 84 053702 | [37] | Thio T and Bennett J W 1994 Phys. Rev. B 50 10574 | [38] | Sarma D D, Krishnakumar S R, Weschke E, Schüßler-Langeheine C, Mazumdar C, Kilian L, Kaindl G, Mamiya K, Fujimori S I, Fujimori A and Miyadai T 2003 Phys. Rev. B 67 155112 | [39] | Clark C and Friedemann S 2016 J. Magn. Magn. Mater. 400 56 | [40] | Birch F 1947 Phys. Rev. 71 809 | [41] | Suzuki T, Uchinokura K, Sekine T and Matsuura E 1977 Solid State Commun. 23 847 | [42] | Lemos V, Gualberto G M, Salzberg J B and Cerdeira F 1980 Phys. Status Solidi B 100 755 | [43] | Kleppe A K and Jephcoat A P 2004 Mineral. Mag. 68 433 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|