Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 106101    DOI: 10.1088/0256-307X/36/10/106101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
High-Pressure Behavior of Nano-Pt in Hydrogen Environment
Can Tian, Xiao-li Huang**, Yan-ping Huang, Xin Li, Di Zhou, Xin Wang, Tian Cui
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012
Cite this article:   
Can Tian, Xiao-li Huang, Yan-ping Huang et al  2019 Chin. Phys. Lett. 36 106101
Download: PDF(901KB)   PDF(mobile)(891KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We choose nano-Pt in hydrogen environment to explore the size effect on the formation of metal hydrides. At 30 GPa, a phase transition in the metal lattice from the cubic to hexagonal phase is observed characterized by a drastically increased volume per metal atom, indicating the formation of PtH-$P6_{3}/mmc$. We find that nano-Pt could form PtH at a lower pressure than the bulk Pt due to its high specific surface and structure defects. The present work provides the possible route to new metal hydrides under mild conditions.
Received: 27 May 2019      Published: 21 September 2019
PACS:  61.05.C- (X-ray diffraction and scattering)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  71.55.Ak (Metals, semimetals, and alloys)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51572108, 11504127, 51632002, 11674122, 11574112, 11474127 and 11634004, the 111 Project under Grant No B12011, the Program for Chang Jiang Scholars and Innovative Research Team in University under Grant No IRT_15R23, the National Found for Fostering Talents of Basic Science under Grant No J1103202, and the China Postdoctoral Science Foundation under Grant No 2016T90245.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/10/106101       OR      https://cpl.iphy.ac.cn/Y2019/V36/I10/106101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Can Tian
Xiao-li Huang
Yan-ping Huang
Xin Li
Di Zhou
Xin Wang
Tian Cui
[1]Goncharenko I, Eremets M, Hanfl, M, Tse J, Amboage M, Yao Y and Trojan I 2008 Phys. Rev. Lett. 100 045504
[2]Somayazulu M, Dera P, Goncharov A F, Gramsch S A, Liermann P, Yang W, Liu Z, Mao H K and Hemley R J 2010 Nat. Chem. 2 50
[3]Ji C, Goncharov A F, Shukla V, Jena N K, Popov D, Li B, Wang J, Meng Y, Prakapenka V B, Smith J S, Ahuja R, Yang W and Mao H K 2017 Proc. Natl. Acad. Sci. USA 114 3596
[4]Pépin C M, Dewaele A, Geneste G, Loubeyre P and Mezouar M 2014 Phys. Rev. Lett. 113 265504
[5]Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[6]Liu Y, Duan D, Tian F, Wang C, Ma Y, Li D, Huang X, Liu B and Cui T 2016 Phys. Chem. Chem. Phys. 18 1516
[7]Liu Y, Duan D, Huang X, Tian F, Li D, Sha X, Wang C, Zhang H, Yang T, Liu B and Cui T 2015 J. Phys. Chem. C 119 15905
[8]Duan D F, Liu Y X, Tian F B, Li D, Huang X L, Zhao Z L, Yu H Y, Liu B B, Tian W J and Cui T 2015 Sci. Rep. 4 6968
[9]Duan D F, Huang X L, Tian F B, Li D, Yu H Y, Liu Y X, Ma Y B, Liu B B and Cui T 2015 Phys. Rev. B 91 180502
[10]Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y M 2012 Proc. Natl. Acad. Sci. USA 109 6463
[11]Geballe Z M, Liu H Y, Mishra A K, Ahart M, Somayazulu M, Meng Y, Baldini M and Hemley R J 2018 Angew. Chem. Int. Ed. 57 688
[12]Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[13]Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[14]Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N and Ohishi Y 2016 Nat. Phys. 12 835
[15]Pepin C M, Geneste G, Dewaele A, Mezouar M and Loubeyre P 2017 Science 357 382
[16]Struzhkin V V, Kim D Y, Stavrou E, Muramatsu T, Mao H K, Pickard C J, Needs R J, Prakapenka V B and Goncharov A F 2016 Nat. Commun. 7 12267
[17]Akahama Y and Kawamura H 2006 J. Appl. Phys. 100 043516
[18]Prescher C and Prakapenka V B 2015 High Press. Res. 35 223
[19]Young R A 1993 IUCr Monographies of Crystallography (Oxford: Oxford University Press) p 5
[20]Scheler T, Degtyareva O, Marqués M, Guillaume C L, Proctor J E, Evans S and Gregoryanz E 2011 Phys. Rev. B 83 214106
[21]Yin L, Wang Y, Pang G, Koltypin Y and Gedanken A 2002 J. Colloid Interface Sci. 246 78
[22]Kuzovnikov M A and Tkacz M 2016 Phys. Rev. B 93 064103
[23]Kuzovnikov M A, Tkacz M, Meng H, Kapustin D I and Kulakov V I 2017 Phys. Rev. B 96 134120
[24]Tiwari G P, Bose A, Chakravartty J K, Wadekara S L, Totlanib M K, Arya R N and Fotedar R K 2000 Mater. Sci. Eng. A 286 269
[25]Xu X, Wen M, Hu Z et al 2002 Comput. Mater. Sci. 23 131
[26]Holmes N C, Moriarty J A, Gathers G R and Nellis W J 1989 J. Appl. Phys. 66 2962
[27]Eremets M I et al 2008 Science 319 1506
[28]Degtyareva O et al 2009 Solid State Commun. 149 1583
Related articles from Frontiers Journals
[1] Zhongmin Ren, Muqin Wang, Shuaishuai Chen, Lei Ding, Hua Li, Jian Liu, Jieyun Zheng, Zhihong Liu, Deyu Wang, and Mingkui Wang. Improvement of Cyclic Stability of Na$_{0.67}$Mn$_{0.8}$Ni$_{0.1}$Co$_{0.1}$O$_{2}$ via Suppressing Lattice Variation[J]. Chin. Phys. Lett., 2021, 38(7): 106101
[2] WANG Kun, QI Qiang, CHENG Gui-Jun, SHI Li-Qun. Microstructure and Mechanical Properties of Ti3SiC2 Irradiated by Carbon Ions[J]. Chin. Phys. Lett., 2014, 31(07): 106101
Viewed
Full text


Abstract