Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 104203    DOI: 10.1088/0256-307X/36/10/104203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Quantifying Process Nonclassicality in Bosonic Fields
Shuang-Shuang Fu1**, Shun-Long Luo2,3
1School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083
2Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190
3School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Shuang-Shuang Fu, Shun-Long Luo 2019 Chin. Phys. Lett. 36 104203
Download: PDF(449KB)   PDF(mobile)(437KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nonclassicality of optical states, as a key characteristic of bosonic fields, is a valuable resource for quantum information processing. We investigate the generation of nonclassicality in quantum processes from a quantitative perspective, introduce three information-theoretic measures of nonclassicality for quantum-optical processes based on the Wigner–Yanase skew information and coherent states, and illustrate their physical significance through several well-known single-mode quantum processes.
Received: 04 July 2019      Published: 21 September 2019
PACS:  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  03.67.-a (Quantum information)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant No 11605006, the National Natural Science Foundation of China under Grant No 11875317, the National Center for Mathematics and Interdisciplinary Sciences of Chinese Academy of Sciences under Grant No Y029152K51, and the Key Laboratory of Random Complex Structures and Data Science of Chinese Academy of Sciences under Grant No 2008DP173182.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/10/104203       OR      https://cpl.iphy.ac.cn/Y2019/V36/I10/104203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuang-Shuang Fu
Shun-Long Luo
[1]Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag)
[2]Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[3]Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[4]Dodonov V V 2002 J. Opt. B 4 R1
[5]Dodonov V V and Man'ko V I 2003 Theory of Nonclassical States of Light (London: Taylor & Francis)
[6]Haroche S and Raimond J M 2006 Exploring the Quantum (Oxford: Oxford University Press)
[7]Vogel W and Welsch D G 2006 Quantum Optics (Weinheim: Wiley-VCH)
[8]Li S B, Zou X B and Guo G C 2007 Phys. Rev. A 75 045801
[9]Glauber R J 1963 Phys. Rev. 131 2766
[10]Sudarshan E C G 1963 Phys. Rev. Lett. 10 277
[11]Titulaer U M and Glauber R J 1965 Phys. Rev. 140 B676
[12]Gerry C C and Knight P L 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press)
[13]Kim M S, Son W, Bužek V and Knight P L 2002 Phys. Rev. A 65 032323
[14]Wang X B 2002 Phys. Rev. A 66 024303
[15]Wang X B 2002 arXiv:0206127v2
[16]Smith G, Smolin J A and Yard J 2011 Nat. Photon. 5 624
[17]Lercher D, Giedke G and Wolf M M 2013 New J. Phys. 15 123003
[18]Hillery M 1987 Phys. Rev. A 35 725
[19]Dodonov V V, Man'ko O V, Man'ko V I and Wünsche A 2000 J. Mod. Opt. 47 633
[20]Wünsche A, Dodonov V V, Man'ko O V and Man'ko V I 2001 Fortschr. Phys. 49 1117
[21]Marian P, Marian T A and Scutaru H 2002 Phys. Rev. Lett. 88 153601
[22]Marian P, Marian T A and Scutaru H 2004 Phys. Rev. A 69 022104
[23]Asbóth J K, Calsamiglia J and Ritsch H 2005 Phys. Rev. Lett. 94 173602
[24]Sun J W, Ding L E, Yang Q Y and Wei L F 2005 Acta Phys. Sin. 54 2704 (in Chinese)
[25]Ma A Q, Wang Q, Liu S T, Zeng R and Ma Z 2005 Acta Phys. Sin. 54 2049 (in Chinese)
[26]Hu L Y, Xu X X and Yuan H C 2010 Acta Phys. Sin. 59 4661 (in Chinese)
[27]Li J, Li G, Wang J M, Zhu S Y and Zhang T C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 085504
[28]Tavassoly M K and Jalali H R 2013 Chin. Phys. B 22 084202
[29]Xu L J, Tan G B, Ma S J and Guo Q 2013 Chin. Phys. B 22 030311
[30]Xu X X, Yuan H C and Wang Y 2014 Chin. Phys. B 23 070301
[31]Wang Z, Li H M and Yuan H C 2014 J. Opt. Soc. Am. B 31 2163
[32]Li H M, Xu X X, Wang Z, Wan Z L and Jun X Y 2018 Int. J. Theor. Phys. 57 2892
[33]Luo S L and Zhang Y 2019 Phys. Rev. A (accepted)
[34]Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[35]Kwiat P G, Barraza-Lopez S, Stefanov A and Gisin N 2001 Nature 409 1014
[36]Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[37]Rahimi-Keshari S, Kiesel T, Vogel W, Grandi S, Zavatta A and Bellini M 2013 Phys. Rev. Lett. 110 160401
[38]Sabapathy K K 2016 Phys. Rev. A 93 042103
[39]Ryl S, Sperling J and Vogel W 2017 Phys. Rev. A 95 053825
[40]Chen H B, Lo P Y, Gneiting C, Bae J, Chen Y N and Nori F 2018 arXiv:1811.09053v2
[41]Sabapathy K K 2015 Phys. Rev. A 92 052301
[42]Wigner E P and Yanase M M 1963 Proc. Natl. Acad. Sci. USA 49 910
[43]Luo S L 2017 Phys. Rev. A 96 052126
[44]Luo S L and Sun Y 2017 Phys. Rev. A 96 022130
[45]Luo S L and Sun Y 2018 Phys. Rev. A 98 012113
[46]Kim M S, Park E, Knight P L and Jeong H 2005 Phys. Rev. A 71 043805
[47]Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[48]Usha Devi A R, Prabhu R and Uma M S 2006 Eur. Phys. J. D 40 133
[49]Yurke B and Stoler D 1986 Phys. Rev. Lett. 57 13
[50]Vourdas A 1986 Phys. Rev. A 34 3466
[51]Hall M J W 1994 Phys. Rev. A 50 3295
[52]Musslimani Z H, Braunstein S L, Mann A and Revzen M 1995 Phys. Rev. A 51 4967
Related articles from Frontiers Journals
[1] Guobin Chen, Yang Hui, Junci Sun, Wenhao He, and Guanxiang Du. Rapid Measurement and Control of Nitrogen-Vacancy Center-Axial Orientation in Diamond Particles[J]. Chin. Phys. Lett., 2020, 37(11): 104203
[2] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 104203
[3] Jin-Song Huang, Jing-Wen Wang, Yao Wang, Yan-Ling Li. High-Efficiency Quantum Routing in a Multi-Cross-Shaped Waveguide[J]. Chin. Phys. Lett., 2019, 36(3): 104203
[4] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 104203
[5] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 104203
[6] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 104203
[7] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 104203
[8] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 104203
[9] Sheng-Li Zhang, Chen-Hui Jin, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou, Guang-Can Guo. Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2016, 33(12): 104203
[10] Chuan-Qi Liu, Chang-Hua Zhu, Lian-Hui Wang, Lin-Xi Zhang, Chang-Xing Pei. Polarization-Encoding-Based Measurement-Device-Independent Quantum Key Distribution with a Single Untrusted Source[J]. Chin. Phys. Lett., 2016, 33(10): 104203
[11] Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou. Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction[J]. Chin. Phys. Lett., 2016, 33(07): 104203
[12] Song Yang, Ning-Juan Ruan, Yun Su, Xu-Ling Lin, Zhi-Qiang Wu. Noiseless Linear Amplification with General Local Unitary Operations[J]. Chin. Phys. Lett., 2016, 33(07): 104203
[13] ZHANG Sheng-Li, WANG-Kun, GUO Jian-Sheng, SHI Jian-Hong. Quantum Illumination with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2015, 32(09): 104203
[14] LV Ning, ZHANG Wei, GUO Yuan, ZHOU Qiang, HUANG Yi-Dong, PENG Jiang-De . End-Output Coupling Efficiency Measurement of Silicon Wire Waveguides Based on Correlated Photon Pair Generation[J]. Chin. Phys. Lett., 2013, 30(7): 104203
[15] ZHAO Sheng-Mei, GONG Long-Yan, LI Yong-Qiang, YANG Hua, SHENG Yu-Bo, CHENG Wei-Wen. A Large-alphabet Quantum Key Distribution Protocol Using Orbital Angular Momentum Entanglement[J]. Chin. Phys. Lett., 2013, 30(6): 104203
Viewed
Full text


Abstract