Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 104202    DOI: 10.1088/0256-307X/36/10/104202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber
H. Ahmad1,2**, M. F. Ismail1, S. N. Aidit1
1Photonics Research Center, University of Malaya, Kuala Lumpur 50603, Malaysia
2Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
Cite this article:   
H. Ahmad, M. F. Ismail, S. N. Aidit 2019 Chin. Phys. Lett. 36 104202
Download: PDF(1772KB)   PDF(mobile)(1760KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A tunable and optically modulated fiber laser utilizing a multi-walled carbon nanotube based saturable absorber is demonstrated for operation in the O-band region. A praseodymium-doped fluoride fiber is used as the gain medium and the system is capable of generating modulated outputs at 1300 nm. Pulsed output is observed at pump powers of 511 mW and above, with repetition rates and pulse widths that can be tuned from 41 kHz and 3.4 μs to 48 kHz and 2.4 μs, respectively, at the maximum pump power available. A maximum average output power of 100 $\mu$W with a corresponding single pulse energy of 2.1 nJ is measured, while the tunability of the proposed laser is from 1290 nm to 1308 nm. The output is stable, with peak power fluctuations of $\sim$4 dB from the average value.
Received: 26 April 2019      Published: 21 September 2019
PACS:  42.55.-f (Lasers)  
  42.55.Wd (Fiber lasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Supported by the Ministry of Higher Education of Malaysia under Grant Nos LRGS(2015)/NGOD/UM/KPT and GA 010-2014 (ULUNG), and the University of Malaya under Grant Nos RU 013-2018 and HiCoE Funding Phase 2.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/10/104202       OR      https://cpl.iphy.ac.cn/Y2019/V36/I10/104202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
H. Ahmad
M. F. Ismail
S. N. Aidit
[1]Wang J S, Vogel E M, Snitzer E, Jackel J L, da Silva V L and Silberberg Y 1994 J. Non-Cryst. Solids 178 109
[2]Karasek M 1975 Opt. Commun. 14 176
[3]Karasek M 1992 IEEE Photon. Technol. Lett. 4 1266
[4]Ohishi Y, Kanamori T and Takahashi S 1991 IEEE Photon. Technol. Lett. 3 688
[5]Sugawa T and Miyajima Y 1991 IEEE Photon. Technol. Lett. 3 616
[6]Sugioka K and Cheng Y 2014 Light: Sci. & Appl. 3 e149
[7]Tamaki T, Watanabe W and Itoh K 2006 Opt. Express 14 10460
[8]Fried N M and Murray K E 2005 J. Endourol. 19 25
[9]Stutzki F, Jansen F, Liem A, Jauregui C, Limpert J and Tünnermann A 2012 Opt. Lett. 37 1073
[10]El-Sherif A F and King T A 2003 Opt. Commun. 218 337
[11]Malinowski A, Vu K T, Chen K K, Nilsson J, Jeong Y, Alam S, Lin D and Richardson D J 2009 Opt. Express 17 20927
[12]Swan W C, Baumann E, Giorgetta F R and Newbury N R 2011 Opt. Express 19 24387
[13]Keller U, Miller D A B, Boyd G D, Chiu T H, Ferguson J F and Asom M T 1992 Opt. Lett. 17 505
[14]Keller U, Weingarten K J, Kärtner F X, Kopf D, Braun B, Jung I D, Fluck R, Hönninger C, Matuschek N and Aus der Au J 1996 IEEE J. Sel. Top. Quantum Electron. 2 435
[15]Hulman M, Pfeiffer R and Kuzmany H 2004 New J. Phys. 6 1
[16]Paschotta R, Häring R, Gini E, Melchior H, Keller U, Offerhaus H L and Richardson D J 1999 Opt. Lett. 24 388
[17]Martinez A and Sun Z 2013 Nat. Photon. 7 842
[18]Iijima S 1991 Nature 354 56
[19]Liu X, Han D, Sun Z, Zeng C, Lu H, Mao D, Cui Y and Wang F 2013 Sci. Rep. 3 2718
[20]Zhou D P, Wei L, Dong B and Liu W K 2010 IEEE Photon. Technol. Lett. 22 9
[21]Set S Y, Yaguchi H, Tanaka Y and Jablonski M 2004 IEEE J. Sel. Top. Quantum Electron. 10 137
[22]Sun Z, Hasan T, Wang F, Rozhin A G, White I H and Ferrari A C 2010 Nano Res. 3 404
[23]Sun Z, Rozhin A G, Wang F, Scardaci V, Milne W I, White I H, Hennrich F and Ferrari A C 2008 Appl. Phys. Lett. 93 061114
[24]Cheng K N, Lin Y H and Lin G R 2013 Laser Phys. 23 045105
[25]Zhang L, Wang Y G, Yu H J, Sun L, Hou W, Lin X C and Li J M 2011 Laser Phys. 21 1382
[26]Banhart F 1999 Rep. Prog. Phys. 62 1181
[27]Ramadurai K, Cromer C L, Dillon A C, Mahajan R L and Lehman J H 2009 J. Appl. Phys. 105 093106
[28]Ahmad H, Reduan S A, Zulkifli A Z and Tiu Z C 2017 Appl. Opt. 56 3841
[29]Ahmad F, Haris H, Nor R M, Zulkepely N R, Ahmad H and Harun S W 2014 Chin. Phys. Lett. 31 034204
[30]Ahmad H, Ismail M F, Hassan S N M, Ahmad F, Zulkifli M Z and Harun S W 2014 Appl. Opt. 53 7025
[31]Chernysheva M, Mou C, Arif R, AlAraimi M, Rümmeli M, Turitsyn S and Rozhin A 2016 Sci. Rep. 6 24220
[32]Ahmad H, Muhamad A, Sharbirin A S, Samion M Z and Ismail M F 2017 Opt. Commun. 383 359
[33]Kuznetsov A G 2013 Optoelectron. Instrum. Data Proc. 49 383
[34]Myslinski P, Chrostowski J, Koningstein J A and Simpson J R 1993 Appl. Opt. 32 286
[35]Woodward R I, Kelleher E J R, Howe R C T, Hu G, Torrisi F, Hasan T, Popov S V and Taylor J R 2014 Opt. Express 22 31113
[36]Degnan J J 1995 IEEE J. Quantum Electron. 31 1890
Related articles from Frontiers Journals
[1] Gangyi Zhu, Mufei Tian, M. Almokhtar, Feifei Qin, Binghui Li, Mengyao Zhou, Fei Gao, Ying Yang, Xin Ji, Siqing He, and Yongjin Wang. Whispering Gallery Mode Lasing Performance's Evolution of Floating GaN Microdisks Varying with Their Thickness[J]. Chin. Phys. Lett., 2022, 39(12): 104202
[2] Jianping Shen, Xin Huang, Songtao Jiang, Rongrong Jiang, Huiyin Wang, Peng Lu, Shaocong Xu, and Mingyu Jiao. Design and Development of a High-Performance LED-Side-Pumped Nd:YAG Rod Laser[J]. Chin. Phys. Lett., 2022, 39(10): 104202
[3] Xin Ni, Kunpeng Jia, Xiaohan Wang, Huaying Liu, Jian Guo, Shu-Wei Huang, Baicheng Yao, Nicolò Sernicola, Zhenlin Wang, Xinjie Lv, Gang Zhao, Zhenda Xie, and Shi-Ning Zhu. Broadband Sheet Parametric Oscillator for $\chi^{(2)}$ Optical Frequency Comb Generation via Cavity Phase Matching[J]. Chin. Phys. Lett., 2021, 38(6): 104202
[4] Jian-Wang Jiang, Shao-Bo Fang, Zi-Yue Zhang, Jiang-Feng Zhu, Hai-Nian Han, Guo-Qing Chang, Zhi-Yi Wei. Monolithic 0–f Scheme-Based Frequency Comb Directly Driven by a High-Power Ti:Sapphire Oscillator[J]. Chin. Phys. Lett., 2020, 37(5): 104202
[5] Fang-Jin Ning, Zhi-Yong Li, Rong-Qing Tan, Lie-Mao Hu, Song-Yang Liu. Diode Pumped Rubidium Laser Based on Etalon Effects of Alkali Cell Windows[J]. Chin. Phys. Lett., 2020, 37(3): 104202
[6] Qiu-Run He, Jing Guo, Bao-Fu Zhang, Zhong-Xing Jiao. High-Repetition-Rate and High-Beam-Quality Laser Pulses with 1.5MW Peak Power Generation from a Two-Stage Nd:YVO$_{4}$ Amplifier[J]. Chin. Phys. Lett., 2019, 36(11): 104202
[7] Li-Jiao He, Ke Liu, Nan Zong, Zhao Liu, Zhi-Min Wang, Yong Bo, Xiao-Jun Wang, Qin-Jun Peng, Da-Fu Cui, Zu-Yan Xu. A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm[J]. Chin. Phys. Lett., 2019, 36(4): 104202
[8] Wei Zhang, Zhi Wei, Yi-Bin Wang, Guang-Yong Jin. The Process of a Laser-Supported Combustion Wave Induced by Millisecond Pulsed Laser on Aluminum Alloy[J]. Chin. Phys. Lett., 2016, 33(01): 104202
[9] LIU Yang, LIU Zhao-Jun, CONG Zhen-Hua, MEN Shao-Jie, XIA Jin-Bao, RAO Han, ZHANG Sa-Sa. Efficient Diode-End-Pumped Actively Q-Switched Nd:YLF/SrWO4 Raman Laser[J]. Chin. Phys. Lett., 2015, 32(12): 104202
[10] MAO Ye-Fei, ZHANG Heng-Li, SANG Si-Han, ZHANG Xin, YU Xi-Long, XING Ji-Chuan, XIN Jian-Guo, JIANG Yi. High-Power Continuous-Wave Nd:GdVO4 Solid-State Laser Dual-End-Pumped at 880 nm[J]. Chin. Phys. Lett., 2015, 32(09): 104202
[11] ZENG Xiang-Mei. Focusing Properties of Partially Coherent Controllable Dark-Hollow Beams through a Thin Lens[J]. Chin. Phys. Lett., 2015, 32(07): 104202
[12] ZHANG Yu-Xia, WANG Shu-Xian, Alberto Di Lieto, YU Guo-Lei, YU Hao-Hai, ZHANG Huai-Jin, Mauro Tonelli, XU Xian-Gang, WANG Ji-Yang. Temperature-Dependent Fluorescence Properties and Diode-Pumped Deep Red Laser Performance of Pr:LiGdF4 Crystal[J]. Chin. Phys. Lett., 2015, 32(5): 104202
[13] ZHUANG Wei, ZHANG Tong-Gang, CHEN Jing-Biao. An Active Ion Optical Clock[J]. Chin. Phys. Lett., 2014, 31(09): 104202
[14] MAO Ye-Fei, ZHANG Heng-Li, XU Liu, DENG Bo, XING Ji-Chuan, XIN Jian-Guo, JIANG Yi. An 880-nm Laser-Diode End-Pumped Nd:YVO4 Slab Laser with a Hybrid Resonator[J]. Chin. Phys. Lett., 2014, 31(07): 104202
[15] JIN Guang-Yong, WU Chun-Ting, CHEN Xin-Yu, YU Yong-Ji, WANG Chao. An Innovative Electro-Optic Q-Switch Technology in 1064 nm and 1319 nm Dual-Wavelength Operation of a Nd:YAG Laser[J]. Chin. Phys. Lett., 2013, 30(3): 104202
Viewed
Full text


Abstract