Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 104201    DOI: 10.1088/0256-307X/36/10/104201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
III–V/Si Hybrid Laser Array with DBR on Si Waveguide
Yan-Ping Li1**, Li-Jun Yuan2, Li Tao1, Wei-Xi Chen1, Bao-Jun Wang2, Jiao-Qing Pan2**
1Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing 100871
2The Key Laboratory of Semiconductor Materials Science, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Yan-Ping Li, Li-Jun Yuan, Li Tao et al  2019 Chin. Phys. Lett. 36 104201
Download: PDF(603KB)   PDF(mobile)(593KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report an eight-channel silicon evanescent laser array operating at continuous wave under room temperature conditions using the selective-area metal bonding technique. The laser array is realized by evanescently coupling the optical gain of InGaAsP multi-quantum wells to the silicon waveguides of varying widths and patterned with distributed Bragg reflector gratings. The lasers have emission peak wavelengths in a range of 1537–1543 nm with a wavelength spacing of about 1.0 nm. The thermal impedances $Z_{\rm T}$ of these hybrid lasers are evidently lower than those DFB counterparts
Received: 03 July 2019      Published: 21 September 2019
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.By (Design of specific laser systems)  
  42.82.Fv (Hybrid systems)  
Fund: Supported by the National Basic Research Program of China under Grant No 2013CB632105, the National High Technology Research and Development Program of China under Grant No 2012AA012203, and the National Natural Science Foundation of China under Grant Nos 61404003 and 11174018.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/10/104201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I10/104201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan-Ping Li
Li-Jun Yuan
Li Tao
Wei-Xi Chen
Bao-Jun Wang
Jiao-Qing Pan
[1]Miller D A B 2000 IEEE J. Sel. Top. Quantum Electron. 6 1312
[2]Jacobsen R S, Andersen K N, Borel P I, Pedersen J F, Frandsen L H, Hansen O, Kristensen M, Lavrinenko A V, Moulin G, Ou H, Peucheret C, Zsigri B and Bjaklev A 2006 Nature 441 199
[3]Almeida V R, Barrios C A, Panepucci R R and Lipson M 2004 Nature 431 1081
[4]Liang D and Bowers J E 2010 Nat. Photon. 4 511
[5]Li X Y, Yuan T N, Shao S Q Shi Z J, Wang Y, Yu Y D and Yu J Z 2011 Physics 40 28
[6]Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A and Paniccia M 2005 Nature 433 725
[7]Cloutier S G, Kossyrev P A and Xu J 2005 Nat. Mater. 4 887
[8]Kuo Y H, Lee Y K, Ge Y, Ren S, Roth J E, Kamins T I, Miller D A B and Harris J S 2005 Nature 437 1334
[9]Tanabe K, Watanbe K and Arakawa Y 2012 Sci. Rep. 2 349
[10]Tang M, Chen S, Wu J, Jiang Q, Dorogan V G, Benamara M, Mazur Y I, Salamo G J, Seeds A and Liu H 2014 Opt. Express 22 11528
[11]Xiao T H, Yu Y and Li Z Y 2017 Acta Phys. Sin. 66 217802 (in Chinese)
[12]Fang A W, Cohen H Park O, Jones R, Paniccia M J and Bowers J E 2006 Opt. Express 14 9203
[13]Stankovic S, Jones R, Sysak M N, Heck J M, Roelkens G and Thourhout D V 2011 IEEE Photon. Technol. Lett. 23 1781
[14]Hong T, Ran G Z, Chen T, Pan J Q et al 2010 IEEE Photon. Technol. Lett. 22 1141
[15]Chen T, Hong T, Pan J Q, Chen W X, Cheng Y B, Wang Y, Ma X B, Liu W L, Zhao L J, Ran G Z, Wang W and Qin G G 2009 Chin. Phys. Lett. 26 064211
[16]Yuan L J, Tao L, Chen W X, Li Y P, Liang S, Yu H Y, Ran G Z, Pan J Q and Wang W 2015 IEEE Photon. Technol. Lett. 27 352
[17]Wang H L and Zheng W H 2016 Chin. Phys. Lett. 33 124207
[18]Fang A W, Koch B R, Jones R, Lively E, Liang D, Kuo Y H and Bowers J E 2008 IEEE Photon. Technol. Lett. 20 1667
[19]Zhao J Y, Chen X, Zhou N et al 2014 Chin. Phys. Lett. 31 074205
[20]Zhang Y, Qu H, Wang H, Zhang S, Liu L, Ma S and Zheng W 2013 Opt. Express 21 877
[21]Konink Y, Raineri F, Bazin A, Raj R, Roelkens G and Baets R 2013 Opt. Lett. 38 2496
[22]Paniccia M 2010 Nat. Photon. 4 498
[23]Kanazawa S, Fujisawa T, Ohki A et al 2011 IEEE J. Sel. Top. Quantum Electron. 17 1191
[24]Fujisawa T, Itoh T, Kanazawa S, Takahata K, Ueda Y, Iga R, Yamanaka T, Kotoku M and Ishii H 2013 Opt. Express 21 182
[25]Nakano Y and Tada K 1988 IEEE J. Quantum Electron. 24 2017
[26]Hong J, Huang W P, Makino T and Pakulski G 1994 IEE Proc. - Optoelectron. 141 303
[27]Tao L, Yuan L J, Li Y P, Yu H Y, Wang B J, Kan Q, Chen W X, Pan J Q, Ran G Z and Wang W 2014 Opt. Express 22 5448
[28]Zhu H L, Hu X D, Wang H, Hua D H, Liang S, Zhao L J and Wang W 2010 IEEE Photon. Technol. Lett. 22 353
[29]Haglund E P, Kumari S, Haglund E, Gustavsson J S, Baets R G, Roelkens G and Larsson A 2017 IEEE J. Sel. Top. Quantum Electron. 23 1700109
[30]Liang D, Fiorentino M, Srinivasan S, Bowers J E and Beausoleil R G 2011 IEEE J. Sel. Top. Quantum Electron. 17 1528
[31]Song B W, Megalini L, Dwivedi S, Ristic S and Jonathan K J 2017 IEEE Photon. Technol. Lett. 29 1143
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 104201
[2] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 104201
[3] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 104201
[4] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 104201
[5] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 104201
[6] Ting Fu, Yu-Fei Wang, Xue-You Wang, Xu-Yan Zhou, Wan-Hua Zheng. Mode Control of Quasi-PT Symmetry in Laterally Multi-Mode Double Ridge Semiconductor Laser[J]. Chin. Phys. Lett., 2020, 37(4): 104201
[7] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 104201
[8] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 104201
[9] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 104201
[10] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 104201
[11] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 104201
[12] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 104201
[13] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 104201
[14] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 104201
[15] Sheng-Nan Zhang, Xiao-Gang Zhang, Jian-Hui Tu, Zhao-Jie Jiang, Hao-Sen Shang, Chuan-Wen Zhu, Wei Yang, Jing-Zhong Cui, Jing-Biao Chen. A 420nm Blue Diode Laser for the Potential Rubidium Optical Frequency Standard[J]. Chin. Phys. Lett., 2017, 34(7): 104201
Viewed
Full text


Abstract