Chin. Phys. Lett.  2019, Vol. 36 Issue (1): 014202    DOI: 10.1088/0256-307X/36/1/014202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Dynamically Tunable Perfect Absorbers Utilizing Hexagonal Aluminum Nano-Disk Array Cooperated with Vanadium Dioxide
Peng Zhou1, Gai-Ge Zheng1,2**, Yun-Yun Chen1,2, Feng-Lin Xian1, Lin-Hua Xu1
1Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044
2Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044
Cite this article:   
Peng Zhou, Gai-Ge Zheng, Yun-Yun Chen et al  2019 Chin. Phys. Lett. 36 014202
Download: PDF(1955KB)   PDF(mobile)(1949KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A tunable perfect absorber composed of hexagonal-arranged aluminum nano-disk array embedded in the vanadium dioxide (VO$_{2}$) film is proposed. The aim is to achieve the tunability of resonance absorption peak in the visible and near-infrared regimes. Numerical results reveal that the absorption peak achieves a large tunability of 76.6% while VO$_{2}$ undergoes a structural transition from insulator phase to metallic phase. By optimizing the structural parameters, an average absorption of 95% is achieved from 1242 to 1815 nm at the metallic phase state. In addition, the near unity absorption can be fulfilled in a wide range of incident angle (0$^{\circ}$–60$^{\circ}$) and under all polarization conditions. The method and results presented here would be beneficial for the design of active optoelectronic devices.
Received: 10 August 2018      Published: 25 December 2018
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  78.66.Bz (Metals and metallic alloys)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 41675154, the Six Major Talent Peak Expert of Jiangsu Province under Grant Nos 2015-XXRJ-014 and R2016L01, the Jiangsu 333 High-Level Talent Cultivation Program under Grant No BRA2016425, and the Research Innovation Program for College Graduates of Jiangsu Province under Grant No KYCX18_1022.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/1/014202       OR      https://cpl.iphy.ac.cn/Y2019/V36/I1/014202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peng Zhou
Gai-Ge Zheng
Yun-Yun Chen
Feng-Lin Xian
Lin-Hua Xu
[1]Cong L Q, Tan S, Yahiaoui R, Yan F, Zhang W and Singh R 2015 Appl. Phys. Lett. 106 031107
[2]Montoya J A, Tian Z B, Krishna S and Padilla W J 2017 Opt. Express 25 23343
[3]Huang H L, Xia H, Guo Z B, Xie D and Li H J 2017 Chin. Phys. Lett. 34 117801
[4]Matsuno Y and Sakurai A 2017 Opt. Mater. Express 7 618
[5]Zhu S N and Zhang X 2018 Natl. Sci. Rev. 5 131
[6]Hess O, Pendry J B, Maier S A, Oulton R F, Hamm J M and Tsakmakidis K L 2012 Nat. Mater. 11 573
[7]Le-Van O, Roux X L, Aassime A and Degiron A 2016 Nat. Commun. 7 12017
[8]Nguyen D M, Xu H, Zhang Y and Zhang B 2015 Appl. Phys. Lett. 107 121901
[9]Boardman A D, Grimalsky V V, Kivshar Y S, Koshevaya S V, Lapine M, Litchinitser N M, Malnev V N, Noginov M, Rapoport Y G and Shalaev V M 2011 Laser Photon. Rev. 5 287
[10]Pope S A and Laalej H 2014 Smart Mater. Struct. 23 075020
[11]Hu F G, Xu X, Li P, Xu X L and Wang Y E 2017 Chin. Phys. B 26 074219
[12]Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra1 M D and Basov D N 2009 Science 325 1518
[13]Menges F, Dittberner D, Novotny L, Passarello D, Parkin S S P, Spieser M, Riel H and Gotsmann B 2016 Appl. Phys. Lett. 108 171904
[14]Savo S, Zhou Y, Castaldi G, Moccia M, Galdi V, Ramanathan S and Sato Y 2015 Phys. Rev. B 91 134105
[15]Wang Y, Zhu J, Yang W, Wen T, Pravica M, Liu Z, Hou M, Fei Y, Kang L, Lin Z, Jin C and Zhao Y 2016 Nat. Commun. 7 12214
[16]Wang S, Kang L and Werner D H 2018 Sci. Rep. 8 189
[17]Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y and Zhang P X 2012 J. Phys. D 45 235106
[18]Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S and Zhang H W 2018 Adv. Opt. Mater. 6 1700620
[19]Verleur H W, Barker A S and Berglund C N 1968 Phys. Rev. 172 788
[20]Savalya P B, Thomas A, Dua R and Dhawan A 2017 Opt. Express 25 23755
[21]Palik E D 1998 Handbook of Optical Constants of Solids (Orlando: Academic Press)
[22]Ogawa S, Shimatani M, Fukushima S, Okuda S and Matsumoto K 2018 Opt. Express 26 5665
[23]Ito K, Toshiyoshi H and Iizuka H 2016 Opt. Express 24 12803
[24]Liang J, Song X, Li J, Lan K and Li P 2017 J. Alloys Compd. 708 999
[25]Jung L S, Campbell C T, Chinowsky T M, Mar M N and Yee S S 1998 Langmuir 14 5636
[26]Liu P, Yang B C, Liu G, Wu R S, Zhang C J, Wan F, Li S G, Yang J L, Gao Y L and Zhou C H 2017 Chin. Phys. B 26 058401
[27]Yu Y, Xiao T H and Li Z Y 2018 Chin. Phys. B 27 017301
[28]Zhou P, Zheng G G, Xu L H, Xian F L and Lai M 2018 Opt. Mater. 81 59
[29]Länk N O, Verre R, Johansson P and Käll M 2017 Nano Lett. 17 3054
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 014202
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 014202
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 014202
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 014202
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 014202
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 014202
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 014202
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 014202
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 014202
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 014202
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 014202
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 014202
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 014202
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 014202
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 014202
Viewed
Full text


Abstract