Chin. Phys. Lett.  2019, Vol. 36 Issue (1): 010501    DOI: 10.1088/0256-307X/36/1/010501
GENERAL |
A New Probe: AFM Measurements for Random Disorder Systems
R. Salci1, D. A. Acar1, O. Oztirpan1, M. Ramazanoglu1,2**
1Physics Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
2Brockhouse Institute for Materials Research, Hamilton, ON L8S 4M1 Canada
Cite this article:   
R. Salci, D. A. Acar, O. Oztirpan et al  2019 Chin. Phys. Lett. 36 010501
Download: PDF(1056KB)   PDF(mobile)(1050KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the quenched random disorder (QRD) effects created by aerosil dispersion in the octylcyanobiphenyl (8CB) liquid crystal (LC) using atomic force microscopy technique. Gelation process in the 8CB+aerosil gels yields a QRD network which also changes the surface topography. By increasing the aerosil concentration, the original smooth pattern of LC sample surfaces is suppressed by the emergence of a fractal aerosil surface effect and these surfaces become more porous, rougher and they have more and larger crevices. The dispersed aerosil also serves as pinning centers for the liquid crystal molecules. It is observed that via the diffusion-limited-aggregation process, aerosil nano-particles yield a fractal-like surface pattern for the less disordered samples. As the aerosil dispersion increases, the surface can be described by more aggregated regions, which also introduces more roughness. Using this fact, we show that there is a net correlation between the short-range ordered x-ray peak widths (the results of previous x-ray diffraction experiments) and the calculated surface roughness. In other words, we show that these QRD gels can also be characterized by their surface roughness values.
Received: 03 September 2018      Published: 25 December 2018
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  61.30.Vx (Polymer liquid crystals)  
  61.30.Hn (Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions)  
  61.43.-j (Disordered solids)  
  68.37.Ps (Atomic force microscopy (AFM))  
Fund: Supported by TUBITAK under Grant No 115F315.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/1/010501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I1/010501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
R. Salci
D. A. Acar
O. Oztirpan
M. Ramazanoglu
[1]Zhou B et al 1997 Liq. Cryst. 22 335
[2]Haga H and Garland C W 1997 Phys. Rev. E 56 3044
[3]Iannacchione G S et al 1998 Phys. Rev. E 58 5966
[4]Bellini T et al 2000 Phys. Rev. Lett. 85 1008
[5]Park S et al 2002 Phys. Rev. E 65 050703 (R)
[6]Leheny R L et al 2003 Phys. Rev. E 67 011708
[7]Frinton Lab, Vienland, NJ 08360
[8]Evonik (Degussa) Corp., Tuzla, Istanbul, TR 34490
[9]Ramazanoglu M et al 2007 Phys. Rev. E 75 061705
[10]Ramazanoglu M et al 2004 Phys. Rev. E 69 061706
[11]Ramazanoglu M et al 2008 Phys. Rev. E 77 031702
[12]Freelon B et al 2011 Phys. Rev. E 84 031705
[13]A scanning probe microscopy made by nanomagnetics was used with tapping and non-contact mode. The AFM probe tapping frequencies were $\sim$161 kHz for these scans.
[14]Raposo M et al 2007 Modern Research and Educational Topics in Microscopy (Badajoz, Spain: Formatex Press) p 758
[15]Iannacchione G S et al 2003 Phys. Rev. E 67 011709
[16]Parvinzadeh M et al 2010 Appl. Surf. Sci. 256 2792
[17]Buscarino G et al 2011 J. Non-Cryst. Solids 357 1866
[18]Clegg P S et al 2003 Phys. Rev. E 67 021703
[19]Garland C W and Nounesis G 1994 Phys. Rev. E 49 2964
Related articles from Frontiers Journals
[1] Xiang Zhang, Yu-Dong Li, Lin Wen, Dong Zhou, Jie Feng, Lin-Dong Ma, Tian-Hui Wang, Yu-Long Cai, Zhi-Ming Wang, Qi Guo. Radiation Effects Due to 3MeV Proton Irradiations on Back-Side Illuminated CMOS Image Sensors[J]. Chin. Phys. Lett., 2018, 35(7): 010501
[2] Yan-Ling Feng, Jian-Min Dong, Xu-Lei Tang. Non-Markovian Effect on Gene Transcriptional Systems[J]. Chin. Phys. Lett., 2016, 33(10): 010501
[3] Ling-Wei Kong, Rong-Zheng Wan, Hai-Ping Fang. Transportation of Two Coupled Particles in an Asymmetric Saw-Tooth Potential[J]. Chin. Phys. Lett., 2016, 33(02): 010501
[4] ZHANG Ji-Qian, HUANG Shou-Fang, PANG Si-Tao, WANG Mao-Sheng, GAO Sheng. Synchronization in the Uncoupled Neuron System[J]. Chin. Phys. Lett., 2015, 32(12): 010501
[5] LIU Yu-Long, YU Xiao-Ming, HAO Yu-Hua. Analytical Results for Frequency-Weighted Kuramoto-Oscillator Networks[J]. Chin. Phys. Lett., 2015, 32(11): 010501
[6] SONG Xiao-Tian, LI Hong-Wei, YIN Zhen-Qiang, LIANG Wen-Ye, ZHANG Chun-Mei, HAN Yun-Guang, CHEN Wei, HAN Zheng-Fu. Phase-Coding Self-Testing Quantum Random Number Generator[J]. Chin. Phys. Lett., 2015, 32(08): 010501
[7] LI Jing-Hui. Dilemma Produced by Infinity of a Random Walk[J]. Chin. Phys. Lett., 2015, 32(5): 010501
[8] LAI Chu-Yu, CHEN Ju-Hua, WANG Yong-Jiu. The Motion of Spinning Particles in the Spacetime of a Black Hole with a Cosmic String Topological Defect[J]. Chin. Phys. Lett., 2014, 31(09): 010501
[9] WANG Can-Jun, YANG Ke-Li, QU Shi-Xian. Time-Delay Enhanced Coherence Resonance in a Discrete Neuron with Noises[J]. Chin. Phys. Lett., 2014, 31(08): 010501
[10] LI Jing-Hui. Average Mean Escape Time for an Overdamped Spatially-Periodic System and Application to Josephson Junction[J]. Chin. Phys. Lett., 2014, 31(06): 010501
[11] LI Jing-Hui. Response of a Superconducting Quantum Interference Device to Alternating Magnetic Field[J]. Chin. Phys. Lett., 2014, 31(06): 010501
[12] LI Jing-Hui. Stochastic Resonance for a SQUID with Dichotomous Resistance[J]. Chin. Phys. Lett., 2014, 31(03): 010501
[13] ZENG Ling-Zao, LIU Bing-Yang, XU Yi-Da, LI Jian-Long. Effect of Time Delay on Binary Signal Detection via a Bistable System[J]. Chin. Phys. Lett., 2014, 31(2): 010501
[14] SUN Xiao-Juan, LU Qi-Shao. Non-Gaussian Colored Noise Optimized Spatial Coherence of a Hodgkin–Huxley Neuronal Network[J]. Chin. Phys. Lett., 2014, 31(2): 010501
[15] Roumen Tsekov. Brownian Markets[J]. Chin. Phys. Lett., 2013, 30(8): 010501
Viewed
Full text


Abstract