Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 086701    DOI: 10.1088/0256-307X/35/8/086701
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms
Tian-You Gao1,3, Dong-Fang Zhang1**, Ling-Ran Kong1,3, Rui-Zong Li1,3, Kai-Jun Jiang1,2**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071
3University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong et al  2018 Chin. Phys. Lett. 35 086701
Download: PDF(894KB)   PDF(mobile)(891KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We experimentally observe the dynamic evolution of atoms in the evaporative cooling, by in-situ imaging the plugged hole of ultracold atoms. Ultracold rubidium atoms confined in a magnetic trap are plugged using a blue-detuned laser beam with a waist of 20 μm at a wavelength of 767 nm. We probe the variation of the atomic temperature and width versus the radio frequency in the evaporative cooling. Both the behaviors are in good agreement with the calculation of the trapping potential dressed by the rf signal above the threshold temperature, while deviating from the calculation near the phase transition. To accurately obtain the atomic width, we use the plugged hole as the reference to optimize the optical imaging system by precisely minimizing the artificial structures due to the defocus effect.
Received: 20 April 2018      Published: 15 July 2018
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  67.10.Ba (Boson degeneracy)  
  64.70.fm (Thermodynamics studies of evaporation and condensation)  
  37.10.De (Atom cooling methods)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301503, the National Natural Science Foundation of China under Grant Nos 11674358 and 11434015, and the Instrument Project of the Chinese Academy of Sciences under Grant No YJKYYQ20170025.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/086701       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/086701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tian-You Gao
Dong-Fang Zhang
Ling-Ran Kong
Rui-Zong Li
Kai-Jun Jiang
[1]Bloom B J et al 2014 Nature 506 71
[2]Hinkley N et al 2013 Science 341 1215
[3]Bloch I et al 2008 Rev. Mod. Phys. 80 885
[4]Jin D S and Ye J 2012 Chem. Rev. 112 4801
[5]de Miranda M H G et al 2011 Nat. Phys. 7 502
[6]Horikoshi M et al 2010 Science 327 442
[7]Nascimbene S et al 2010 Nature 463 1057
[8]Schirotzek A et al 2009 Phys. Rev. Lett. 102 230402
[9]Nascimbene S et al 2009 Phys. Rev. Lett. 103 170402
[10]Lin Y J et al 2011 Nature 471 83
[11]Peng S et al 2012 Phys. Rev. A 86 063610
[12]Gunter K et al 2005 Phys. Rev. Lett. 95 230401
[13]Peng S G et al 2014 Phys. Rev. Lett. 112 250401
[14]Anderson M H et al 1995 Science 269 198
[15]Davis K B et al 1995 Phys. Rev. Lett. 75 3969
[16]Bradley C C et al 1995 Phys. Rev. Lett. 75 1687
[17]Ho T L and Zhou Q 2010 Nat. Phys. 6 131
[18]Zhang D et al 2016 Chin. Phys. Lett. 33 076701
[19]Davis K B et al 1995 Phys. Rev. Lett. 74 5202
[20]Garraway B M and Perrin H 2016 J. Phys. B 49 172001
[21]Zobay O and Garraway B M 2001 Phys. Rev. Lett. 86 1195
[22]Zhang W et al 2005 Phys. Rev. A 72 053627
[23]Naraschewski M and Stamper-Kurn D M 1998 Phys. Rev. A 58 2423
[24]Liu X J et al 2004 Phys. Rev. A 69 043605
[25]Mishra S R et al 2017 Pramana 88 59
[26]Wang Y Z et al 2003 Chin. Phys. Lett. 20 799
[27]Andrews M R et al 1996 Science 273 84
[28]Choi J et al 2012 Phys. Rev. Lett. 109 125301
[29]Langen T 2013 Phys. Rev. Lett. 111 159601
[30]Choi J et al 2013 Phys. Rev. Lett. 111 159602
[31]Seo S W et al 2014 J. Korean Phys. Soc. 64 53
Related articles from Frontiers Journals
[1] Canzhu Tan, Fachao Hu, Zhijing Niu, Yuhai Jiang, Matthias Weidemüller, and Bing Zhu. Measurements of Dipole Moments for the $5{s}5{p}\,^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ Transitions via Autler–Townes Spectroscopy[J]. Chin. Phys. Lett., 2022, 39(9): 086701
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 086701
[3] Benquan Lu, Xiaotong Lu, Jiguang Li, and Hong Chang. Reconciliation of Theoretical Lifetimes of the $5s5p\,^3\!P^{\rm o}_2$ Metastable State for $^{88}$Sr with Measurement: The Role of the Blackbody-Radiation-Induced Decay[J]. Chin. Phys. Lett., 2022, 39(7): 086701
[4] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 086701
[5] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 086701
[6] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 086701
[7] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 086701
[8] Wei Qi, Ming-Cheng Liang, Han Zhang, Yu-Dong Wei, Wen-Wei Wang, Xu-Jie Wang, Xibo Zhang. Experimental Realization of Degenerate Fermi Gases of $^{87}$Sr Atoms with 10 or Two Spin Components[J]. Chin. Phys. Lett., 2019, 36(9): 086701
[9] Xiao-Bin Ma, Zhu-Xiong Ye, Li-Yang Xie, Zhen Guo, Li You, Meng Khoon Tey. Measurement of S-Wave Scattering Length between $^6$Li and $^{88}$Sr Atoms Using Interspecies Thermalization in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2019, 36(7): 086701
[10] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, Jing Zhang. Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line[J]. Chin. Phys. Lett., 2018, 35(12): 086701
[11] Ya-Hui Wang, Zhong-Qi Ma. Spin-1/2 Fermion Gas in One-Dimensional Harmonic Trap with Attractive Delta Function Interaction[J]. Chin. Phys. Lett., 2017, 34(2): 086701
[12] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 086701
[13] Dong-Fang Zhang, Tian-You Gao, Ling-Ran Kong, Kai Li, Kai-Jun Jiang. Production of Rubidium Bose–Einstein Condensate in an Optically Plugged Magnetic Quadrupole Trap[J]. Chin. Phys. Lett., 2016, 33(07): 086701
[14] Qiang Zhu, Bing Wang, De-Zhi Xiong, Bao-Long Lü. Signature of Critical Point in Momentum Profile of Trapped Ultracold Bose Gases[J]. Chin. Phys. Lett., 2016, 33(07): 086701
[15] OUYANG Sheng-De, LIU Jing, XIANG Shao-Hua, SONG Ke-Hui. Ground State Property of a One-Dimensional Bose–Hubbard Model Using Time-Evolving Body Decimation[J]. Chin. Phys. Lett., 2013, 30(8): 086701
Viewed
Full text


Abstract