Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 077801    DOI: 10.1088/0256-307X/35/7/077801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Reflective Inorganic All-Thin-Film Flexible Electrochromic Device with a Seven-Layer Structure
Chao Zhou, Hui Zhou**, Hua-Ping Zuo, Kai-Feng Zhang**, Hu Wang, Yu-Qing Xiong
Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000
Cite this article:   
Chao Zhou, Hui Zhou, Hua-Ping Zuo et al  2018 Chin. Phys. Lett. 35 077801
Download: PDF(596KB)   PDF(mobile)(594KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A reflective electrochromic device is fabricated on a 10 cm$\times$10 cm flexible PI/Al substrate using magnetron sputtering. The device has a complementary all-thin-film structure and consists of seven layers. Indium tin oxide (ITO) acts as a transparent electrode deposited on the top, meanwhile, an aluminum (Al) film is adopted as an inter-counter bottom electrode and provides high reflectance. Tungsten oxide (WO$_{3}$) is used as the main electrochromic layer and nickel oxide (NiO) acts as the complementary electrochromic layer. Lithium niobate (LiNbO$_{3}$) is applied as a Li$^{+}$ ion conductor layer. Especially, in the seven-layer structure, two tantalum oxides (Ta$_{2}$O$_{5}$) are added as transition layers to prevent Li$^{+}$ escaping from LiNbO$_{3}$ when the potential is not applied on the device. When the device is in an electrochromic process, both Ta$_{2}$O$_{5}$ provide excellent conductivity for Li$^{+}$ ions and act as the dielectric of electrons. The complementary device with structure Al/NiO/Ta$_{2}$O$_{5}$/LiNbO$_{3}$/Ta$_{2}$O$_{5}$/WO$_{3}$/ITO exhibits good optical properties, and the reflectance modulation reaches up to 55% measured by a spectrophotometer in the range of 400–1600 nm. The cyclic stability of the electrochromic device is investigated. The results indicate that the charge density involved in the electrochromic process decreases and the electrochromic response time increases with the cycle number because of the Li$^{+}$ insertion in WO$_{3}$.
Received: 06 March 2018      Published: 24 June 2018
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  81.15.Cd (Deposition by sputtering)  
  82.47.Tp (Electrochemical displays)  
Fund: Supported by the Science and Technology on Vacuum Technology and Physics Laboratory for the Research Project under Grant No 6142207040104.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/077801       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/077801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao Zhou
Hui Zhou
Hua-Ping Zuo
Kai-Feng Zhang
Hu Wang
Yu-Qing Xiong
[1]Granqvist C G 1995 Handbook of Inorganic Electrochromic Materials (Amsterdam: Elsevier)
[2]Arvizu M A, Niklasson G A and Granqvist C G 2017 Chem. Mater. 29 2246
[3]Rodrigues L C, Silva M M, Smith M J, Gonçalves A and Fortunato E 2011 Electrochim. Acta 57 52
[4]Dalavi D S, Devan R S, Patil R S, Ma Y R and Patil P S 2013 Mater. Lett. 90 60
[5]Granqvist C G, Avendaño E and Azens A 2003 Thin Solid Films 442 201
[6]Larsson A L and Niklasson G A 2004 Sol. Energy Mater. Sol. Cells 84 351
[7]Subrahmanyam A and Karuppasamy A 2007 Sol. Energy Mater. Sol. Cells 91 266
[8]Li C P, Wolden C A, Dillon A C and Tenent R C 2012 Sol. Energy Mater. Sol. Cells 99 50
[9]Liu Q R, Dong G B, Xiao Y, Gao F Y, Wang M, Wang Q, Wang S, Zuo H P and Diao X G 2015 Mater. Lett. 142 232
[10]Wang S C, Liu K Y and Huang J L 2011 Thin Solid Films 520 1454
[11]Ahn K S, Nah Y C and Sung Y E 2002 Appl. Phys. Lett. 81 3930
[12]Tajima K, Hotta H, Yamada Y, Okada M and Yoshimura K 2011 Sol. Energy Mater. Sol. Cells 95 3370
[13]Tajima K, Hotta H, Yamada Y, Okada M and Yoshimura K 2012 Sol. Energy Mater. Sol. Cells 104 146
[14]Liu Q R, Dong G B, Xiao Y, Delplancke-Ogletree M P, Reniers F and Diao X G 2016 Sol. Energy Mater. Sol. Cells 157 844
[15]Yang H G, Wang C, Zhu K G, Diao X G, Wang H Y, Cui Y and Wang T M 2008 Chin. Phys. Lett. 25 740
[16]Cui H N, Teixeira V, Meng L J, Martins R and Fortunato E 2008 Vacuum 82 1507
[17]Wen R, Arvizu M A, Morales-Luna M, Granqvist C G and Niklasson G A 2016 Chem. Mater. 28 4670
Related articles from Frontiers Journals
[1] Fanwei Liu, Sisi Huang, Sidan Chen, Xinzhong Chen, Mengkun Liu, Kuijuan Jin, and Xi Chen. Infrared Nano-Imaging of Electronic Phase across the Metal–Insulator Transition of NdNiO$_3$ Films[J]. Chin. Phys. Lett., 2022, 39(7): 077801
[2] Jianguo Zhao, Kai Chen, Maogao Gong, Wenxiao Hu, Bin Liu, Tao Tao, Yu Yan, Zili Xie, Yuanyuan Li, Jianhua Chang, Xiaoxuan Wang, Qiannan Cui, Chunxiang Xu, Rong Zhang, and Youdou Zheng. Epitaxial Growth and Characteristics of Nonpolar $a$-Plane InGaN Films with Blue-Green-Red Emission and Entire In Content Range[J]. Chin. Phys. Lett., 2022, 39(4): 077801
[3] Feng Li, Weiyuan Duan, Manuel Pomaska, Malte Köhler, Kaining Ding, Yong Pu, Urs Aeberhard, and Uwe Rau. Quantum Transport across Amorphous-Crystalline Interfaces in Tunnel Oxide Passivated Contact Solar Cells: Direct versus Defect-Assisted Tunneling[J]. Chin. Phys. Lett., 2021, 38(3): 077801
[4] Shilei Ji , Hong Wu , Shuang Zhou , Wei Niu , Lujun Wei , Xing-Ao Li , Feng Li, and Yong Pu. Enhancement of Curie Temperature under Built-in Electric Field in Multi-Functional Janus Vanadium Dichalcogenides[J]. Chin. Phys. Lett., 2020, 37(8): 077801
[5] Zhi Meng, Lei Shen, Zongwei Ma, Muhammad Adnan Aslam, Liqiang Xu, Xueli Xu, Wang Zhu, Long Cheng, Yuecheng Bian, Li Pi, Chun Zhou, Zhigao Sheng. Transient Photoconductivity in LaRhO$_{3}$ Thin Film[J]. Chin. Phys. Lett., 2019, 36(11): 077801
[6] Baoan Liu, Suye Yu, Xiangcao Li, Xin Ju. Electronic Structure and Optical Property Calculation of an Oxygen Vacancy in NH$_{4}$H$_{2}$PO$_{4}$ Crystals[J]. Chin. Phys. Lett., 2019, 36(3): 077801
[7] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 077801
[8] Jun Zhang, Jun Liao, Le-Xi Shao, Shu-Wen Xue, Zhi-Guo Wang. Lithium/Silver-Doped Cu$_{2}$ZnSnS$_{4}$ with Tunable Band Gaps and Phase Structures: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(8): 077801
[9] Ze-Ning XIONG, Xiang-Qian XIU, Yue-Wen LI, Xue-Mei HUA, Zi-Li XIE, Peng CHEN, Bin LIU, Ping HAN, Rong ZHANG, You-Dou ZHENG. Growth of $\beta$-Ga$_{2}$O$_{3}$ Films on Sapphire by Hydride Vapor Phase Epitaxy[J]. Chin. Phys. Lett., 2018, 35(5): 077801
[10] Hong Wu, Yun-Hui Wang, Zhi-Hong Yang, Feng Li. Two-Dimensional Borane with 'Banana' Bonds and Dirac-Like Ring[J]. Chin. Phys. Lett., 2018, 35(3): 077801
[11] Yue-Qin Wang, Yin Liu, Ming-Xu Zhang, Fan-Fei Min. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO$_{3}$: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(1): 077801
[12] Somayeh Asgary, Amir Hoshang Ramezani. Dependence of Nitrogen/Argon Reaction Gas Amount on Structural, Mechanical and Optical Properties of Thin WN$_{x}$ Films[J]. Chin. Phys. Lett., 2017, 34(12): 077801
[13] Wen-Jing Ban, Wen-Ting Guo, Jian-Lin Luo, Nan-Lin Wang. Observation of Temperature Induced Plasma Frequency Shift in an Extremely Large Magnetoresistance Compound LaSb[J]. Chin. Phys. Lett., 2017, 34(7): 077801
[14] N. Bafandeh, M. M. Larijani, A. Shafiekhani, M. R. Hantehzadeh, N. Sheikh. Effects of Contents of Multiwall Carbon Nanotubes in Polyaniline Films on Optical and Electrical Properties of Polyaniline[J]. Chin. Phys. Lett., 2016, 33(11): 077801
[15] Hong Liu, Jing-Ping Zhu, Kai Wang, Xiu-Hong Wang, Rong Xu. Three-Component Model for Bidirectional Reflection Distribution Function of Thermal Coating Surfaces[J]. Chin. Phys. Lett., 2016, 33(06): 077801
Viewed
Full text


Abstract